The Design of Ambiguous Mechanisms

ALFREDO DI TILLIO
Bocconi University, IGIER

NENAD KOS
Bocconi University, IGIER

and

MATTHIAS MESSNER
Bocconi University, IGIER, CESifo

First version received August 2012; final version accepted September 2016 (Eds.)

This article explores the sale of an object to an ambiguity averse buyer. We show that the seller can increase his profit by using an ambiguous mechanism. That is, the seller can benefit from hiding certain features of the mechanism that he has committed to from the agent. We then characterize the profit maximizing mechanisms for the seller and characterize the conditions under which the seller can gain by employing an ambiguous mechanism. Finally, we propose a class of ambiguous mechanisms that are easy to implement and perform better than the best non-ambiguous mechanism.

Key words: Optimal mechanism design, Ambiguity aversion, Incentive compatibility, Individual rationality

JEL Codes: C72, D44, D82

1. INTRODUCTION

Starting with the seminal work of Ellsberg [1961], experimental economists have argued that the standard economic model for decision making under uncertainty, namely the Expected Utility Model (henceforth EU model), performs rather poorly in describing individuals’ behaviour in situations where subjects have very little information regarding the decision problem they are facing. In particular, it has been shown that the overwhelming majority of individuals tends to shy away from alternatives for which they lack the necessary information to form a probabilistic belief about their consequences. It is well known that this aversion against uncertainty/ambiguity is incompatible with the EU model.

1. The sense in which ambiguity aversion is incompatible with the EU model is best explained with Ellsberg’s famous two urn example. There are two urns, each of which contains one hundred balls. Half of the balls in Urn A are red, the other half is blue. Also Urn B is composed of balls that are either red or blue, but the decision maker has no information about the number of balls of each color. Now consider the following two bets. Bet RA pays one dollar if in a random draw from Urn A a red ball is extracted; bet RB pays one dollar if a random draw from Urn B yields a red ball. When faced with the choice between these two bets the overwhelming majority of subjects picks bet RA. The same they
This inconsistency between observed decisions and the EU model has stimulated the development of decision theoretic models that are able to accommodate ambiguity aversion. For two recent surveys of the literature on ambiguity aversion and its axiomatic foundations, see Gilboa (2009) and Gilboa and Marinacci (2013). While ambiguity aversion models have been successfully applied in many areas of economics and finance, they have received only limited attention in mechanism design (see the discussion of the literature below).

We consider a screening model in which a seller is selling an object to a single ambiguity averse buyer. For most of the paper we assume that the agent’s preferences can be described by the maxmin expected utility model (MMEU) proposed by Gilboa and Schmeidler (1989). The agent privately observes his willingness to pay for the good, while the principal only knows the distribution from which it has been drawn. We introduce the concept of an ambiguous mechanism, i.e., a mechanism where the principal announces a set of possible standard mechanisms (henceforth simple mechanisms), and commits to one of them without revealing to the buyer which one he has chosen.

We then proceed to show that a seller who faces an ambiguity averse agent can strictly benefit from using such ambiguous mechanisms. This result has wide-ranging consequences. It implies that in any mechanism design environment with ambiguity averse agents—be it auctions, bilateral trade, optimal taxation, unemployment insurance, or some other setting—the analysis is not without loss of generality unless ambiguous mechanisms are considered.

Through the use of an ambiguous mechanism, the principal exposes the agent to ambiguity regarding the consequences of his report. Since the agent has MMEU preferences, he associates with each possible report the worst possible outcome that he can obtain under all the simple mechanisms that compose the ambiguous mechanism. Different types evaluate outcomes differently, and hence they may associate different worst-case scenarios with a given report. It is precisely this feature that makes the use of ambiguous mechanisms attractive for the principal: the principal can design the ambiguous mechanism in such a way that each outcome function that it contains deters the agent from a subset of his deviation possibilities. In this way, each of the simple mechanisms that compose the ambiguous mechanism can be distorted less than the outcome function of a simple mechanism, which has to prevent the agent from all his possible deviations.

The arguments in the preceding paragraph presume that the agent believes that the principal might have committed to any of the elements of the ambiguous mechanism. Put differently, it takes for granted that the agent’s (set-valued) belief over the set of outcome functions contains at least all degenerate distributions over this set. The assumption that the agent holds such a “comprehensive” belief is reasonable if it is compatible with the principal being indifferent between all the elements of the ambiguous mechanism, provided that the agent acts optimally with respect to such a belief. We therefore require that all elements of an ambiguous mechanism generate the same expected revenue under the assumption that the agent chooses his strategy based on a comprehensive belief. We refer to ambiguous mechanisms that satisfy this condition as consistent. A formal definition of the consistency condition is presented in Section 3. While from a technical point of view we treat consistency as a constraint that limits the feasible actions available to the designer, it should be interpreted as an equilibrium condition in the interaction between the principal and the agent.

2. See for instance Epstein and Schmeidler (2008) and Castro and Yannelis (2014) for examples of applications of ambiguity aversion in finance and general equilibrium.
In the remainder of the article, we characterize the profit maximizing static mechanisms in the above described environment. First, we formulate and prove a version of the Revelation Principle that is appropriate for our context. Doing so allows us to restrict attention to direct ambiguous mechanisms. We characterize (one of) the smallest optimal direct ambiguous mechanism(s) for the case where the set of possible types of the agent is finite. We show that this mechanism is composed of at most $N - 1$ elements, where N is the number of types. The n-th outcome function of this ambiguous mechanism assigns the good with probability one to all types $m \neq n$, N at a price that coincides with the reported type. Thus, every outcome function extracts the entire surplus from $N - 2$ types. The highest type also obtains the good with probability one. However, since his transfers are used to guarantee consistency, he typically does not have to pay a price equal to his willingness to pay. The remaining components of the outcome functions (allocations and payments of type $n \leq N - 1$ under outcome function n) vary with the details of the type distribution. More specifically, we show that these components depend on the types’ so-called adjusted virtual valuations. Independently of the details of the type distribution, these components satisfy a monotonicity condition: the probability with which type n obtains the good under outcome function n is smaller than or equal to the probability with which outcome function $m > n$ assigns the good to type m. The share of surplus that the designer can extract from the agent increases as the type set becomes larger and the probability of each type converges to zero. In the limiting case of a non-atomic type distribution over an interval, the optimal ambiguous mechanism extracts the full surplus from the agent.

The effectiveness of optimal ambiguous mechanisms in extracting surplus from the buyer comes at the cost of complexity of implementation. This complexity limits the applicability of such mechanisms to real-life scenarios. However, the broader idea that the seller could benefit by concealing some aspects of the mechanism from the buyers (thus making it ambiguous) can be observed in reality. Perhaps the most prominent examples are auctions with secret reserve prices. In another instance, Bergemann and Horner (2010) discuss the case of Google’s sponsored search auctions where the algorithm to pick the winner is unknown.

In addition, we show that ambiguous mechanisms do not need to be prohibitively complex to outperform non-ambiguous mechanisms. In Section 5, we propose a class of basic ambiguous mechanisms which despite being easy to implement dominate all non-ambiguous mechanisms in terms of the expected revenue they generate. We dub these mechanisms naive ambiguous mechanisms. Essentially, a naive ambiguous mechanism can be thought of as a choice between a take-it-or-leave-it (TOL) offer and an ambiguous bet (an Elsberg urn) with an unknown composition of balls of two colours. Of course the agent can also opt out. If the agent chooses the ambiguous bet he receives the object and pays half of the TOL price (receives a 50% discount) if the ball drawn out of the urn is of the colour he has chosen; otherwise he gets and pays nothing. A max-min agent with a valuation above the TOL price optimally chooses the TOL price, which guarantees him a strictly positive payoff. An agent with a valuation between the discounted price and the full price selects the ambiguous bet; the remaining types opt out. The naive mechanism that is constructed on the basis of an optimal TOL price outperforms this optimal

3. The term “smallest” refers to the number of elements of the ambiguous mechanism.
4. Ashenfelter (1989) documents the existence of secret reserve prices at the famous auction houses as Hendricks et al. (1988) in auctions for off-shore oil, Elyakime et al. (1994) in timber auctions in France, and Bagari and Hortacsu (2003) on eBay, to name a few. Auctions with ex ante uncertain auction rules are also applied in the used car market. In these auctions first buyers submit their bids. Upon observing the bids the auctioneer either declares a winner or he calls for a second round of bids and so on. The rule according to which the decision about whether or not to continue is taken, is not known to buyers (and supposedly not easily inferable from previous observations unless the bidder is extremely experienced). We are thankful to Larry Samuelson for pointing us to this example.
TOL price mechanism because a part of the types below the TOL price are induced to buy and thus contribute to the seller’s revenue.

In the final section of the article, we discuss how the result on full surplus extraction under ambiguity aversion relates to the findings of Matthews (1983), who shows that with risk aversion growing towards infinity the seller’s rents grow towards full surplus extraction. We then proceed to show that the principal may want to elicit payoff-irrelevant private information from the agent. Since such information is easy to generate, the principal has an incentive to induce the agent to inflate his type set by adding payoff irrelevant elements.

We provide three robustness checks. First, we show that the seller benefits from ambiguous mechanisms even if he is ambiguity averse himself. Consistency ensures that the seller obtains the same expected payoff from all outcome functions. Therefore, even if a third person were to choose the outcome function the seller would not be exposed to ambiguity. What is more, we show that even if the seller’s preferences can be described by MMEU and one does not require consistency, the mechanisms that we derive are optimal. Second, we argue that the central insight of the paper—that the principal can exploit the agent’s ambiguity aversion by offering an ambiguous mechanism—does not depend on the specific model of ambiguity aversion we adopt (MMEU preferences) but remains valid under alternative models of uncertainty aversion. More specifically, we provide an example that shows this for the case of smooth ambiguity aversion. The third dimension in which the core insight of the paper generalizes is the number of agents. While we do not provide a detailed characterization of the optimal ambiguous mechanism for the case where the agents’ type sets are finite, we describe in Appendix B the mechanism that extracts the full surplus when the agents’ types are drawn from an atom-free distribution defined on some interval.

Related literature: A number of recent papers consider mechanism design problems with ambiguity averse players. Examples include Bose et al. (2006), Turocy (2008), Bose and Daripa (2009), Bodoh-Creed (2013), Bose and Renou (2014), Bergemann and Schlag (2011), Auster (2015), and Lang and Wambach (2013). The central difference between these papers and ours is that they start from the assumption that the agents (and/or the principal) are uncertain about the other agents’ type distribution. That is, the uncertainty in these models refers to an exogenously given variable. The endogenous objects (i.e., the mechanisms) are not allowed to be ambiguous. Instead, these papers characterize the optimal standard (i.e., non-ambiguous) mechanism, where attention is restricted either to direct mechanisms or to simple forms of indirect mechanisms (e.g., standard auction formats).

To the best of our knowledge, this is the first paper showing that it can be in the designer’s interest to introduce uncertainty over outcome functions when agents are ambiguity averse. In a contemporaneous and independent paper, Bose and Renou (2014) also recognize that in such

6. The implications of risk aversion for the design of an optimal mechanism are also studied by Maskin and Riley (1984).
7. The details of our characterization of an optimal ambiguous mechanism depend on the assumption of MMEU preferences.
8. Several models of beliefs and behaviour in games that relax the assumption of Bayesian expected-utility maximizing players have been proposed. See e.g., Azrieli and Teper (2011) and the references therein. Moreover, ambiguity aversion has also been applied in environments with moral hazard; see Lang and Wambach (2013).
9. Bose and Renou (2014) are an exception to this observation; their work is discussed in more detail in the following paragraph.
10. Similar comments apply both to the literature on moral hazard with ambiguity aversion and the literature on models with Knightian uncertainty. For the literature on moral hazard and ambiguity aversion see for instance Kellner (2015) and Szydlowski (2014); on Knightian uncertainty in mechanism design see Lopomo et al. (2009) and Carter (2014) and the references therein.
contexts the principal may want to introduce some element of uncertainty into the mechanism that he uses. The two papers are complementary, as they study the impact of ambiguity aversion through quite distinct channels. Unlike in this article, in their work ambiguity is not introduced via the outcome functions. Instead, they explore which social choice rules the designer can implement if he engages the agents in a dynamic communication game that he mediates by transforming messages in an ambiguous way. By injecting uncertainty in the exchange of messages between the agents, the principal can manipulate the agents’ beliefs about each other’s type and hence their behaviour. Bose and Renou (2014) remark that the precise extent to which the agents’ beliefs can be manipulated depends on the assumed form of (full Bayesian) belief updating. In contrast, restricting attention to strategic form mechanisms makes the question of what is the most appropriate way to model updating by ambiguity averse individuals—an issue still controversially discussed in the literature—altogether irrelevant in our context. Finally, the ambiguous communication devices in Bose and Renou (2014) serve to manipulate the agents’ beliefs over the other agents’ types and hence they are ineffective in single agent environments. Instead, as we show in this article, (outcome) ambiguous mechanisms have leverage also in the case of a single agent.

The article is also related to the literature on robust mechanism design that originated with the seminal papers by Bergemann and Morris (2005) and Chung and Ely (2007). This literature departs from the standard Bayesian type space framework that has dominated the earlier mechanism design literature and studies what kind of social choice functions are implementable irrespective of the assumed type space. Requiring such a form of robustness with respect to the details of the type space is similar in spirit to the idea of a designer who is uncertain about the “correct” type space. Apart from the fact that the “uncertainty aversion” in the case of this literature is on the side of the designer, the crucial conceptual difference to our work lies in the fact that the family of the relevant type spaces is not an endogenous object (like the ambiguous mechanisms in our work) but is exogenously given.

Finally, the article also relates to the literature on ambiguity aversion in game theory (see for instance the papers Azrieli and Teped 2011 and Bade 2011).

2. MOTIVATING EXAMPLE

Consider a principal selling an object to an ambiguity averse and risk neutral buyer whose preferences can be represented by maxmin expected utility. The buyer’s valuation for the object, θ, is 1 with probability 1/4, 2 with probability 1/4 and 4 with probability 1/2. The seller’s objective is to maximize expected revenue.

The optimal standard mechanism in this setting is a TOL offer at the price of 4. The corresponding direct mechanism asks the agent to report his type and awards him the object at a price of 4 if the agent announces $\theta = 4$. For any other report the seller keeps the object and no transfer takes place. The expected revenue generated by this mechanism is 2. It will prove convenient to represent the described direct mechanism in Table 1, where (q^*, t^*) denotes the outcome function (probability with which the good is transferred and transfer to be paid) and $\hat{\theta}$ denotes the reported type.

<table>
<thead>
<tr>
<th>$\hat{\theta}$</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(q^, t^)$</td>
<td>(0,0)</td>
<td>(0,0)</td>
<td>(1,4)</td>
</tr>
</tbody>
</table>
Suppose that instead of offering the above standard mechanism (henceforth, we will refer to such mechanisms also as simple mechanisms) the seller proceeds as follows. Before he asks the buyer to communicate his valuation of the good, he informs him that he has committed to a simple (direct) mechanism. But instead of letting the buyer know which simple mechanism he has committed to he only tells him that this simple mechanism is an element of some set of simple mechanisms that he reveals to the buyer. By not providing the buyer with any further information about the simple mechanism to which he has committed, the seller exposes the buyer to ambiguity about the consequences of his messages. We therefore refer to the set of simple mechanisms that is communicated to the buyer as an ambiguous mechanism.

For the sake of concreteness, suppose the seller offers an ambiguous mechanism that contains two (direct) simple mechanisms, denoted by \((q_1,t_1)\) and \((q_2,t_2)\), respectively. Assume that the first outcome function, \((q_1,t_1)\), specifies that upon a message \(\hat{\theta} = 1\) the object remains with the seller and there are no transfers. If the agent reports \(\hat{\theta} = 2\), he obtains the object at a price of 1. Finally, in case the agent’s message is \(\hat{\theta} = 4\), he obtains the object and pays 4. The second outcome function, \((q_2,t_2)\), awards the object at a price of 1 to the agent if he reports \(\hat{\theta} = 1\), does not award the object to the agent, and no transfer takes place, if the agent reports \(\hat{\theta} = 2\). If the agent reports \(\hat{\theta} = 4\), he receives the object with certainty and pays 4. We denote the ambiguous mechanism composed of these two simple mechanisms by \(\Omega\). The details of \(\Omega\) are summarized in the Table 2.

We now turn to the question of how the buyer should behave when he is offered the mechanism \(\Omega\). The buyer’s preferences are of the max-min expected utility type, hence whenever he is faced with a decision problem under ambiguity, he associates with each action that he may take the payoff that this action yields in the (action specific) worst case scenario. In the context of our example, the buyer is exposed to ambiguity through the mechanism \(\Omega\): the consequences of a message that he can send to the seller depend on the outcome function to which the seller has committed, and the buyer has no explicit or even implicit information regarding the seller’s choice.

If the buyer does consider it possible that the principal might have committed to either of the two outcome functions in \(\Omega\), then the payoff that type \(\theta\) associates with a message \(\hat{\theta}\) is \(\min(q^1(\hat{\theta})\theta - t^1(\hat{\theta}), q^2(\hat{\theta})\theta - t^2(\hat{\theta}))\). We will now argue that truthful reporting is an optimal strategy for the buyer. To see this, suppose first that the buyer’s type is \(\theta = 4\). If he reports this truthfully he obtains the object with certainty and pays a price of 4 (both simple mechanisms specify this outcome when \(\hat{\theta} = 4\)). His payoff in that case is therefore 0. If he reports type 2 he gets the object at a price of 1 if he is facing the simple mechanism \((q_1,t_1)\); the corresponding payoff is \(1 \times 4 - 1 = 3\). On the other hand, if he is faced with \((q_2,t_2)\) he does not get the object, and does not have to pay anything. Consequently, his payoff in that case is 0. So the worst-case payoff both for truth-telling and for reporting type 2 is equal to 0, meaning that reporting type

<table>
<thead>
<tr>
<th>(\hat{\theta})</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>((q_1,t_1))</td>
<td>(0.0)</td>
<td>(1.1)</td>
<td>(1.4)</td>
</tr>
<tr>
<td>((q_2,t_2))</td>
<td>(1.1)</td>
<td>(0.0)</td>
<td>(1.4)</td>
</tr>
</tbody>
</table>

11. Throughout the article, we slightly abuse terminology by identifying direct mechanisms with their outcome functions.

12. Remember that we have also imposed risk neutrality.
2 when the true type is 4 does not represent a profitable deviation. The same reasoning can be applied to show that type 4 cannot do better by reporting 1 instead of 4. In fact, the “symmetry” in the outcomes after reporting either type 1 or 2 implies that all three types are indifferent between these two reports. Thus, in order to complete our argument we just have to show that neither type 1 nor type 2 can do better by reporting 4 than by telling the truth. This follows from the fact that reporting 4 implies a payment of 4, which exceeds the valuations of both lower types.

Under truthful reporting, both outcome functions in \(\Omega \) generate an expected revenue of \(\frac{9}{4} \):\[\begin{align*}
(q_1^1, t_1^1): & \quad 0 \times \frac{1}{4} + 1 \times \frac{1}{4} + 4 \times \frac{1}{2} = \frac{9}{4} \\
(q_2^1, t_2^1): & \quad 1 \times \frac{1}{4} + 0 \times \frac{1}{4} + 4 \times \frac{1}{2} = \frac{9}{4}.
\end{align*}\]

This expected revenue exceeds the expected revenue of 2 which is achieved by the optimal standard mechanism (which is a TOC offer at a price of 4). This shows the seller can do strictly better by adopting an ambiguous mechanism rather than limiting himself to a standard mechanism.

The above analysis relies on two crucial assumptions on which we want to comment further. First, in order for the ambiguous mechanism \(\Omega \) to generate a higher expected revenue than the best simple mechanism it is crucial that the seller has the possibility to commit to one of the two simple mechanisms in \(\Omega \) before the agent makes his choice. It is straightforward to see that if the principal does not have the possibility to commit but makes his choice between \((q_1^1, t_1^1)\) and \((q_2^1, t_2^1)\) ex post, then truth-telling is no longer optimal. Without commitment the principal would always choose the first outcome function after receiving message \(\hat{\theta} = 2 \) and the second one upon getting message \(\hat{\theta} = 1 \). But if that is the case, then type 4 of the buyer would never want to report his type truthfully since by choosing either of the other two messages he could get the object with the same probability but at a lower price. Thus, in the absence of commitment to a specific outcome function in \(\Omega \), the agent can predict the seller’s ex post choice and will thus not perceive his situation as ambiguous. But then adopting an ambiguous mechanism cannot help the seller to achieve a higher payoff if he is not able to commit to a specific element of the ambiguous mechanism ex ante.

Given this observation, it is important to understand that the commitment that ambiguous mechanisms require is no stronger than the kind of commitment imposed in most of the mechanism design literature. The only difference is that we assume that the principal can commit to something that the agent cannot observe before he makes his choice. We can assume that the simple mechanism to which the principal commits is described in some document that is stored in a place the access to which is jointly controlled by the principal and the agent (so that ex post they can verify together which allocation-transfer pair should be implemented). Put differently, what matters is the verifiability of the mechanism and of the messages vis-a-vis a third party who can guarantee the correct implementation of the mechanism.

The second important assumption on which the analysis of the above example builds is the assumption that the buyer considers it possible that the seller has committed to either of the two outcome functions in \(\Omega \). This is a reasonable assumption in light of the fact that the seller is not providing the buyer with any explicit information as to which outcome function he might have chosen. However, the buyer should only really expect the seller to choose a simple mechanism in \(\Omega \) that yields the seller the highest profit. The possibility to indirectly infer the simple mechanism chosen by the principal is incompatible with the idea that the buyer perceives the mechanism that he is presented as ambiguous. We therefore impose the requirement that the principal can offer only ambiguous mechanisms such that all their elements generate the same expected revenue provided the agent acts optimally based on the belief that the principal might have committed
to any of the outcome functions in the ambiguous mechanism. We refer to this condition as consistency. It is due to this consideration that we have chosen Ω in such a way that both its simple mechanisms generate the same expected revenue.

Finally, the consistency of the proposed ambiguous mechanism guarantees that the seller obtains the same expected revenue regardless of which of the two outcome functions is chosen. Therefore even if the seller was ambiguity averse and a third party were to choose an outcome function, he would not be exposed to ambiguity by the ambiguous mechanism. That is, even if the seller is ambiguity averse himself the proposed mechanism guarantees him a higher payoff than the best non-ambiguous mechanism.

3. FRAMEWORK

Throughout the first part of the article, we consider the mechanism design problem of a principal selling a single unit of a good to a single agent. The notation and terminology that we introduce below generalize in the obvious way to the case of multiple agents, which we consider in Appendix B.

3.1. Allocations and preferences

An allocation is a pair $(x, \tau) \in X \times \mathbb{R}$, where $x \in X = [0, 1]$ denotes the probability with which the good is transferred to the agent, and τ the monetary transfer the agent has to pay to the principal. With a slight abuse of terminology, we will typically use the term “allocation” to indicate the non-monetary component x of a pair (x, τ). The agent’s preferences over $X \times \mathbb{R}$ depend on his type $\theta \in \Theta \subset \mathbb{R}$. More specifically, we assume that they are represented by the linear utility function $u(x, \tau) = x\theta - \tau$.

The agent’s valuation of the good, that is, his type θ, is his private information. Throughout the first part of the article, we assume that Θ is a finite set with N elements and we index types so that θ_n is increasing in n. The principal’s beliefs regarding the agent’s type are described by the probability distribution $p = (p_1, \ldots, p_N)$.

The agent is ambiguity averse in the sense of Gilboa and Schmeidler (1989). That is, in a situation where his beliefs are described by a family of distributions over allocation-transfer pairs, Λ, his utility is given by

$$\inf_{\lambda \in \Lambda} E_{\lambda}[x\theta - \tau].$$

The principal is risk and ambiguity neutral. His objective is to maximize expected revenue, that is, the expected transfer paid by the agent. We show in Section 6.2 that our main results go through also under the assumption of an ambiguity averse principal. Allowing for this possibility, however, does not add anything of interest to our analysis as the central insights that we obtain are driven by the agent’s ambiguity aversion.

3.2. Simple versus ambiguous mechanisms

A simple mechanism is a triple (S, q, t), where S is a set of messages that the agent may send to the principal, and the functions q and t map S into X and \mathbb{R}, respectively. $q(s)$ is the probability with

\[13. \text{Instead of interpreting } x \text{ as the probability with which the indivisible good is transferred one can equivalently assume that the good is perfectly divisible and that } x \text{ represents the share given to the agent.}\]
which the good is transferred to the agent if he sends message s, while $t(s)$ is the corresponding transfer that the agent has to pay to the principal. We refer to q and t, respectively, as allocation and transfer rules on S; the pair (q,t) is the outcome function of the mechanism. A direct simple mechanism is a simple mechanism such that $S = \Theta$. Since all direct mechanisms share the same message space, we drop the latter from the notation and identify the direct mechanism (Θ,q,t) with its outcome function (q,t).

Mechanism design models typically assume that besides committing to a particular outcome function the principal also fully and credibly reveals it to the agent. In effect, if the agent has standard expected utility preferences then the latter part of this assumption is innocuous, as the principal cannot gain anything from concealing this information. The central insight of this article is that this is no longer true with an ambiguity averse agent. Indeed, we show that it is typically in the principal’s best interest not to inform the agent about the exact outcome function he commits to. Instead, he can benefit from communicating the rules of the mechanisms in an ambiguous way, by only announcing that it belongs to a certain set. The notion of an ambiguous mechanism captures the idea of such ambiguous rules.

Definition 1. (Ambiguous mechanism). An ambiguous mechanism is a pair (S,Ω), where S is a set of messages, and Ω is a set of outcome functions defined on S, i.e. $\Omega \subset X^S \times \mathbb{R}^S$. A generic element of Ω is denoted by (q,t), where $q \in X^S$ and $t \in \mathbb{R}^S$.

Before we go on, a few remarks on the interpretation and purpose of the concept of an ambiguous mechanism are in order. After choosing a set of possible messages, S, the principal commits to an outcome function (\hat{q},\hat{t}). This commitment may be achieved, say, by depositing (\hat{q},\hat{t}) with an uninterested third party. The agent is not fully informed about the chosen outcome function. Instead the principal limits himself to telling the agent that it belongs to a set Ω. Of course, by announcing such ambiguous rules he exposes the agent to uncertainty about the consequences of his messages, and we discuss the principal’s motives for doing so in the next section.

The requirement that $(\hat{q},\hat{t}) \in \Omega$ rules out the possibility that the principal completely deceives the agent with regard to (\hat{q},\hat{t}). We stress once more the fact that the principal commits to (\hat{q},\hat{t}) before the agent sends his message; therefore the choice of (\hat{q},\hat{t}) cannot be conditioned on the message.

3.3. Agent’s strategies and beliefs

Once the designer has specified an ambiguous mechanism, (S,Ω), the agent chooses a message from S. A strategy for the agent is a function σ that maps Θ into S, i.e. $\sigma \in S^\Theta$.

We assume that the agent cannot use mixed strategies. This assumption, which is commonly adopted in the ambiguity literature, has some bite, as an ambiguity averse individual facing two
alternatives with uncertain consequences may strictly prefer mixing over the alternatives to each of the two. However, we maintain that besides being pervasive in the literature, the assumption is especially weak in our context. Unlike an expected utility maximizer, an ambiguity averter may ex ante wish to randomize even over alternatives that he is not indifferent over. But if the individual has strict preferences over the alternatives he is randomizing over, then the strong ex ante incentives to mix conflicts with the individual’s ex post incentives to implement the outcome of the randomization. In this case, allowing for mixed strategies may therefore matter only if the agent can commit to obeying the recommendation of some randomizing device. Making such a commitment in a mechanism design context is difficult, because the designer can do better by declining reports generated by such devices, that is, by requiring reports to be made directly by the agent.

The set of optimal strategies for the agent depends on his beliefs regarding the outcome function \((\hat{q}, \hat{t})\) to which the principal has committed himself. The agent’s only piece of hard information in this respect is that the function belongs to \(\Omega\). On the other hand, the agent knows that the principal seeks to maximize his revenue. Given the agent’s ambiguity aversion, it thus seems appropriate to assume that his belief set contains the entire family \(\Delta(\Omega)\) of probability measures on \(\Omega\), provided that such a belief set is not incompatible with the principal’s optimizing behaviour in a sense that we formalize next.

For any ambiguous mechanism \((S, \Omega)\), let \(\Sigma^*(S, \Omega)\) designate the corresponding set of optimal strategies for the agent, when his beliefs are given by \(\Delta(\Omega)\). Since the agent is risk neutral, calculating the infimum of his expected payoffs with respect to \(\Delta(\Omega)\) delivers the same value as the one obtained when attention is restricted to \(\Omega\). Thus, the set \(\Sigma^*(S, \Omega)\) is the set of all \(\sigma \in S^\Theta\) such that for each \(\theta \in \Theta\),

\[
\sigma(\theta) \in \arg \max_{s \in S} \inf_{(q, t) \in \Omega} [q(s)\theta - t(s)].
\]

Definition 2. (Consistency). An ambiguous mechanism \((S, \Omega)\) is consistent with respect to \(\sigma \in \Sigma^*(S, \Omega)\) if under \(\sigma\) all outcome functions in \(\Omega\) yield the same expected revenue to the principal, i.e. if for all \((q, t), (q', t') \in \Omega\)

\[
\mathbb{E}_p[t(\sigma(\theta))] = \mathbb{E}_p[t'(\sigma(\theta))].
\]

The ambiguous mechanism \((S, \Omega)\) is consistent if it is consistent with respect to some \(\sigma \in \Sigma^*(S, \Omega)\).

Consistency requires that each element of the ambiguous mechanism \(\Omega\) delivers the same expected revenue to the principal if the agent bases his choice on the belief set \(\Delta(\Omega)\). To shed further light on this condition, consider a situation where it is not satisfied. Thus, suppose that the principal proposes an ambiguous mechanism \((S, \Omega)\) such that for every \(\sigma \in \Sigma^*(S, \Omega)\) there exist \((q, t), (q', t') \in \Omega\) with \(\mathbb{E}_p[t(\sigma(\theta))] < \mathbb{E}_p[t'(\sigma(\theta))]\). In this case, the agent’s assumption that the principal might have chosen any of the elements in \(\Omega\) leads to the conclusion that the principal strictly prefers some elements of \(\Omega\) over other elements of \(\Omega\), if he correctly predicts the agent’s

17. Ever since Raiffa (1961), it is well known that randomization may help the agent to hedge against the uncertainty involved in the two alternatives. Recently, Saito (2015) provided an axiomatization of ambiguity aversion which does not give rise to a hedging motive.

18. While this argument only refers to randomizations over alternatives that the individual does not consider as equivalent, it is sufficient for our purpose. In our context, the agent will have to decide which type to report to the principal. The optimal direct mechanism that we will derive can be arbitrarily closely approximated by a mechanism with the property that no type of the agent is indifferent between any two messages.
belief and strategy. Consistency rules out such contradictory beliefs. It is essentially an equilibrium condition for the two-stage game played by the two parties. In equilibrium, the agent should not entertain the possibility that a certain outcome function is chosen, if the strategy that he intends to implement in response to this belief implies that the outcome function does not maximize the designer’s payoff.

Finally, we remark that requiring the seller to be indifferent before the buyer reports his type rather than after, is to the seller’s benefit. If the seller could choose his preferred simple mechanism in the ambiguous mechanism after the report, he would choose a mechanism with the highest transfer given the report. The buyer would foresee this and calculate his payoffs accordingly. In particular, every type of the agent would associate with any given report the same worst case scenario, namely the outcome function in Ω with the smallest probability of trade (for that report) among the simple mechanisms that specify the highest transfer (for that report). But then the agent’s behaviour vis-a-vis the ambiguous mechanism Ω would be exactly the same as the agent’s behaviour vis-a-vis a simple mechanism that specifies only these worst case allocations and transfers. Consequently, the expected revenue of the designer would also be exactly the same. Thus, if the designer does not commit ex ante to an element in Ω, he cannot do any better than by using only simple mechanisms.

4. OPTIMAL AMBIGUOUS MECHANISMS

In designing the optimal ambiguous mechanism, the principal has to take into account two types of constraints. First, he must respect the consistency condition that we have discussed in the preceding section. Second, since we assume that the buyer’s participation in the mechanism is voluntary, the principal must make sure that the mechanism allows each type of the agent to earn at least his outside option. We assume that the latter is equal to zero for every type. Thus, the principal’s problem is to choose among all ambiguous mechanisms (S, Ω) for which there exists some $\sigma \in \Sigma^*(S, \Omega)$ satisfying the conditions

\[
\begin{align*}
\mathbb{E}_p[t(\sigma(\theta))] &= \mathbb{E}_p[t'(\sigma(\theta))] \quad \text{for all } (q, t), (q', t') \in \Omega, \\
\inf_{(q, t) \in \Omega} \{q(\sigma(\theta)) - t(\sigma(\theta))\} &\geq 0 \quad \text{for all } \theta \in \Theta,
\end{align*}
\]

the one that delivers the highest expected revenue.

In what follows we show that the principal’s problem can be substantially simplified.

4.1. The Revelation Principle

First we prove a version of the Revelation Principle that applies to our environment, by showing that the principal can without loss of generality offer the agent an ambiguous mechanism that (i) asks the agent to report his type, and (ii) is constructed in such a way that the agent is willing to do so in a truthful manner.

Definition 3. (Incentive compatibility). An ambiguous mechanism (S, Ω) is direct if $S = \Theta$, in which case we identify the mechanism with its set of outcome functions Ω, and for all $(q, t) \in \Omega$
and $1 \leq n \leq N$ we write q_n and t_n for $q(\theta_n)$ and $t(\theta_n)$, respectively. A direct ambiguous mechanism Ω is downward incentive compatible if

$$\inf_{(q,t) \in \Omega} \{ q_n \theta_n - t_n \} \geq \inf_{(q,t) \in \Omega} \{ q_m \theta_n - t_m \} \quad \text{for all } 1 \leq m < n \leq N,$$

(DIC)

upward incentive compatible if

$$\inf_{(q,t) \in \Omega} \{ q_n \theta_n - t_n \} \geq \inf_{(q,t) \in \Omega} \{ q_m \theta_n - t_m \} \quad \text{for all } 1 \leq n < m \leq N,$$

(UIC)

and incentive compatible if it is both downward and upward incentive compatible.

Proposition 1. (Revelation Principle). Let (S, Ω) be an ambiguous mechanism that is consistent with respect to $\sigma \in \Sigma^\ast(S, \Omega)$. The direct ambiguous mechanism $\Omega' = \{ (q', t') \in X^S \times R^S : q' = q \circ \sigma, t' = t \circ \sigma \text{ for some } (q, t) \in \Omega \}$ is incentive compatible and consistent with respect to truth-telling.

Proof. Proofs of the results can be found in the Appendix, unless stated otherwise. ||

The Revelation Principle guarantees that given any consistent ambiguous mechanism, (S, Ω), we can find a direct ambiguous mechanism, Ω', satisfying incentive compatibility and such that, element by element, (S, Ω) and Ω' generate the same allocations and transfers, and hence give both the principal and the agent the same payoff. As a consequence, the principal can restrict himself to direct ambiguous mechanisms that satisfy incentive compatibility, consistency with respect to truth-telling and individual rationality (condition (3)). In the case of direct ambiguous mechanisms Ω, the latter may be rewritten as

$$\inf_{(q,t) \in \Omega} \{ q_n \theta_n - t_n \} \geq 0 \quad \text{for all } 1 \leq n \leq N.$$

(IR)

Thus, the principal’s problem can be written as:

$$\max_{R \in \mathbb{R}, \Omega \subseteq X^S \times R^S} R$$

(P)

subject to

$$R = \sum_{n=1}^{N} p_n t_n \quad \text{for all } (q, t) \in \Omega,$$

(C)

(DIC), (UIC) and (IR).

We now consider the relaxed version of this problem where constraint (UIC) is removed, and show through a sequence of lemmata that the set of feasible mechanisms for the relaxed problem can be substantially restricted while leaving the problem’s value unchanged. Finally, we prove that all optimal mechanisms for the thus modified relaxed problem in fact satisfy (UIC), and are therefore also optimal solutions of the original Problem (P). Given a direct ambiguous mechanism Ω that satisfies (C), in what follows we write $R(\Omega)$ for the expected revenue associated with every simple mechanism in the ambiguous mechanism Ω, so that

$$R(\Omega) = \sum_{n=1}^{N} p_n t_n,$$

for all $(q, t) \in \Omega$.

4.2. Uniform, minimal, and monotonic ambiguous mechanisms

We first show that the relaxed version of Problem (P) always admits solutions that do not expose truthfully reporting types to ambiguity, except possibly the highest type. That is, the truthtelling payoff of every type \(\theta_n, n < N \), is constant across the outcome functions of the optimal ambiguous mechanism. Moreover, at the optimum for each type one of the downward incentive constraints must be binding. Thus, the truthtelling payoffs coincide with the payoff that types can obtain from the most attractive downward deviation. In what follows we refer to these properties as uniformity.

Definition 4. (Uniformity). A direct ambiguous mechanism \(\Omega \) is uniform if

\[
q_1 \theta_1 - t_1 = 0, \quad \text{for all } (q,t) \in \Omega,
\]

\[
q_n \theta_n - t_n = \max_{1 \leq m < n(q',t') \in \Omega} \{q'_m \theta_n - t'_m\}, \quad \text{for all } 1 < n < N \text{ and all } (q,t) \in \Omega, \quad \text{(Uni)}
\]

\[
q_N \theta_N - t_N = \max_{1 \leq m < N(q',t') \in \Omega} \{q'_m \theta_N - t'_m\}, \quad \text{for some } (q,t) \in \Omega.
\]

Note that uniformity implies both downward incentive compatibility ((DIC)) and individual rationality ((IR)). This is immediate to see in the case of (DIC). As for (IR), observe that for all \((q,t) \in \Omega \) and all \(1 < n \leq N \) we have

\[
q_1 \theta_n - t_1 \geq q_1 \theta_1 - t_1.
\]

That is, type \(\theta_n, n > 1 \), cannot obtain a lower payoff from reporting \(\theta_1 \) than type \(\theta_1 \) himself. By the first condition in the definition of uniformity the lowest type’s payoff from truth-telling is zero. But then, the second and third condition of uniformity can be satisfied only if the truth-telling payoffs of all types \(\theta_n, n > 1 \), are (weakly) larger than zero too.

Lemma 1. For every direct ambiguous mechanism \(\Omega \) satisfying (C), (DIC), and (IR) there is a direct ambiguous mechanism \(\Omega' \) satisfying satisfying (C), (Uni), and \(R(\Omega') \geq R(\Omega) \).

The fact that imposing the uniformity condition (Uni) is without loss of generality—in the relaxed problem where (UIC) is removed but, as we argue later, in Problem (P) as well—resembles the standard result from mechanism design, stating that at the optimum the downward incentive compatibility constraints and the individual rationality constraint of the lowest type are binding. Ambiguity aversion and the consistency requirement, however, demand special attention in establishing this fact. In the proof of the lemma we show that if any simple mechanism, \((q,t) \), in the ambiguous mechanism \(\Omega \) gives the lowest type a strictly positive payoff, then it can be changed by increasing \(t_1 \) to \(q_1 \theta_1 \) and decreasing the transfer \(t_N \) in a way that leaves the simple mechanism’s expected revenue unaltered. Given that the expected revenue remains constant, this modification is neutral with respect to the consistency condition (C). Moreover, increasing the lowest type’s transfer and decreasing the one of the highest type cannot possibly lead to a violation of any downward incentive compatibility condition.

Using similar arguments, we show that the value of the designer’s problem is not affected if he only considers ambiguous mechanisms \(\Omega \) such that each \((q,t) \in \Omega \) satisfies the property that truthful reporting of type \(\theta_n, n \leq N \), yields the same payoff as the most attractive misreport of a lower type (not necessarily the downward adjacent one).

In the statement of Problem (P), ambiguous mechanisms are allowed to be of any size. The next result shows that the problem can be substantially simplified since attention can be restricted
to ambiguous mechanisms that are both “small” and have a simple structure. In particular, Lemma 2 shows that there is always a solution of the relaxed version of Problem (P) that contains $N - 1$ (not necessarily distinct) simple mechanisms. Each one of these outcome functions serves the purpose to deter downward deviations towards one particular report. We will henceforth refer to mechanisms with this property as minimal mechanisms.

Definition 5. (Minimality). An ambiguous mechanism Ω is minimal if $\Omega = \{(q^1, t^1), \ldots, (q^{N-1}, t^{N-1})\}$, with

$$q^m_\ell \theta_n - t^m_\ell \leq q^m_\ell \theta_n - t^\ell_m$$

for all $1 \leq \ell < N$, and all $m < n \leq N$. (Min)

Lemma 2. For every direct ambiguous mechanism Ω, satisfying (C) and (Uni) there is a direct ambiguous mechanism Ω' satisfying (C), (Uni), (Min), and $R(\Omega) \leq R(\Omega')$.

The fact that each outcome function (q^m, t^m) of a minimal mechanism has to dissuade the agent only from reporting θ_n when his true type is higher, provides the central intuition for why the seller can do better with an ambiguous mechanism than with a simple mechanism. With multiple outcome functions the designer has more instruments to take care of the incentive constraints. Each simple mechanism in the ambiguous mechanism takes care of only a subset of incentive compatibility constraints. While the outcome function (q^m, t^m) guarantees that no type $\theta_n > \theta_m$ wishes to report θ_m, another outcome function, (q^m', t^m'), performs the same task with respect to report θ_m'. Each simple mechanism in the ambiguous mechanism is therefore less distorted than the optimal non-ambiguous mechanism, which has to take care of all the incentive compatibility conditions.

The principal’s ability to limit himself to minimal mechanisms has immediate consequences for the case of a binary type set. In this case, having multiple simple mechanisms in the ambiguous mechanism does not provide any advantage in handling the incentive constraints. Indeed, when there are only two types Lemma 2 readily implies that the seller cannot do better with an ambiguous mechanism containing multiple outcome functions than with a standard non-ambiguous mechanism.

Corollary 1. If the type set Θ contains only two elements, then the use of ambiguous mechanisms does not allow the principal to achieve a higher expected revenue than the one that he can obtain with an optimal non-ambiguous mechanism.

Given this result we will mostly disregard the case of $N = 2$ from here on. That is, until we explicitly state otherwise, we assume throughout our analysis that there are at least three types.

We finally show that within the set of ambiguous mechanisms that are minimal and uniform, we only have to consider ambiguous mechanisms that exhibit allocation rules that have a particularly simple structure. More specifically, attention can be limited to mechanisms with allocation rules that are equal to 1 for all except possibly one report. Moreover, the coordinates of the outcome

21. By allowing for the possibility that minimal ambiguous mechanisms contain multiple copies of one and the same outcome function we slightly abuse the meaning of the term “set” that we are using when referring to ambiguous mechanisms. The reasons for adopting this convention are purely notational.
functions that are allowed to differ from 1 can be assumed to satisfy a monotonicity condition defined across outcome functions.

Definition 6. (Monotonicity). A minimal direct ambiguous mechanism \(\Omega = \{ (q^1, t^1), \ldots, (q^{N-1}, t^{N-1}) \} \) is monotonic if

\[
q_m^m = 1 \quad \text{for all} \ 1 \leq m < N, \ 1 \leq n \leq N, \ n \neq m \quad \text{(Mon)}
\]
\[
q_m^m \leq q_n^n \quad \text{for all} \ 1 \leq m < N, m \leq n \leq N - 1.
\]

Lemma 3. For every direct ambiguous mechanism \(\Omega \), satisfying (C), (Uni), and (Min), there is a direct ambiguous mechanism \(\Omega' \) satisfying (C), (Uni), (Min), (Mon), and \(R(\Omega') \geq R(\Omega) \).

The intuition for the result that in the simple mechanism \((q^m, t^m) \) only the allocation \(q_{mm} \) needs to be left unrestricted is rather straightforward. We have observed earlier, that the purpose of \((q^m, t^m) \) is to prevent the agent from reporting \(\theta_m \) when he is of a higher type. Since by uniformity the truthtelling payoff of type \(\theta_m \) has to be constant across outcome functions, it follows that the payoff of higher types who value the good more, must be minimized by the outcome function that awards the object with the lowest probability. Thus, \(q_{mm} \leq q_m^n \) for all \(m' \neq m \). Finally, if \((q^m, t^m) \) takes care of the downward deviation constraints towards \(\theta_m \), then an increase of \(q_m^n \) could neither affect the (downward) incentive compatibility of the mechanism nor its individual rationality. Consequently, \(q_m^n \) can be set equal to one.

The second part of (Mon), \(q_m^m \geq q_{m-1}^{m-1} \) for all \(m \) strictly between 1 and \(N \), parallels the monotonicity result in a standard mechanism design problem with ambiguity neutral agents, where an allocation rule is implementable if and only if it is monotonic. This property translates in a natural way into our setting with an ambiguity averse agent.

In the proof of the lemma, we show that this is the case because under a uniform ambiguous mechanism the most attractive (downward) deviation option for type \(\theta_m \) is the report that guarantees the largest worst case allocation, i.e. the report that guarantees \(\max_{m < n} \min_{\ell < N} q_{m \ell} \).

Thus, if \(1 \leq m' < m < N \), and \(q_m^m > q_{m'}^m \), then there is no type \(\theta_n \), \(n > m \), for whom the incentive constraint with respect to \(\theta_m \) is binding. Consequently, by an increase of \(q_m^m \) up to \(q_{m'}^m \) that is accompanied by a corresponding increase of \(t_m^m \) (so that the truth-telling payoff of type \(\theta_m \) remains unchanged) no downward incentive constraints of any type \(\theta_n > \theta_m \) is violated. Since such an increase of \(q_m^m \) (and the associated increase of \(t_m^m \)) does not affect the downward incentive constraints of types \(\theta_n \), \(n \leq m \) it follows that the assumed non-monotonicity can be eliminated without affecting downward incentive compatibility. Through appropriate adjustments of the transfers of the highest type (C) can be reestablished and (DIC) can be strengthened into (Uni). None of these modifications affects (Min).

The three results above show that in solving the relaxed version of Problem (I), where (UIC) is removed, one can restrict attention to mechanisms that satisfy condition (C), uniformity, minimality, and monotonicity. We now show that properties (C), (Uni), (Min), and (Mon) are actually sufficient for feasibility in the original Problem (I) where (UIC) is present.

Lemma 4. If a direct ambiguous mechanism \(\Omega \) satisfies (Uni), (Min), and (Mon), then it also satisfies (UIC).

The main result of this section now follows.
We are now ready to derive an optimal ambiguous mechanism. First, we provide a useful proposition:

Proposition 2. Every solution to problem

\[
\max_{R \in \mathbb{R}, \Omega \subset \mathbb{R}^n \times \mathbb{R}^n} R \quad \text{(P')} \\
\text{subject to } \{\text{Uni}, \text{Min} \text{ and } \text{Mon}\}.
\]

is also a solution to Problem \(\{W \} \).

4.3. The optimal uniform, minimal, and monotonic ambiguous mechanism

We are now ready to derive an optimal ambiguous mechanism. First, we provide a useful characterization of the constraint set of Problem \(\{W \} \).

Lemma 5. A minimal and monotonic direct ambiguous mechanism \(\Omega = \{ (q_1^1, t_1^1), \ldots, (q_{N-1}^{N-1}, t_{N-1}^{N-1}) \} \) satisfies \(\{\text{Uni} \} \) if and only if the following hold:

\[
r_m^m = q_m^m \theta_m - \sum_{k=1}^{r-1} q_k^m (\theta_{k+1} - \theta_k) \quad \text{for all } 1 \leq m, n \leq N-1, \tag{3}
\]

\[
\max_{1 \leq m \leq N} r_m^n = \theta_N - \sum_{k=1}^{N-1} q_k^m (\theta_{k+1} - \theta_k). \tag{4}
\]

Lemma 5 shows that the transfers of minimal, monotonic, and uniform mechanisms can be expressed in terms of the allocation vector \((q_1^1, \ldots, q_{N-1}^{N-1}) \). The only exception to this rule are the transfers of the highest type. However, those are bounded above by an expression that depends solely on \((q_1^1, \ldots, q_{N-1}^{N-1}) \) (condition \(\{3\} \)). Conversely, any minimal and monotonic mechanism satisfies conditions \(\{3\} \) and \(\{4\} \) is also uniform. Thus, solving Problem \(\{W \} \) amounts to optimally choosing allocations \(q_1^1 \leq \ldots \leq q_{N-1}^{N-1} \) and transfers \(t_1^1, \ldots, t_{N-1}^{N-1} \). All other allocations are equal to one, while all other transfers are determined via \(\{3\} \) through the choice of \((q_1^1, \ldots, q_{N-1}^{N-1}) \). The two constraints that the transfers must satisfy are condition \(\{3\} \) and consistency; i.e. \(t_1^N, \ldots, t_{N-1}^N \) together with the transfers that are determined through \(\{3\} \) must be such that \(\sum_{m=1}^{N} q_m^m \) is constant in \(m \). Given these observations, we say that the vector of allocations \((q_1^1, \ldots, q_{N-1}^{N-1}) \) generates or induces the mechanism \(\Omega = \{ (q_1^1, t_1^1), \ldots, (q_{N-1}^{N-1}, t_{N-1}^{N-1}) \} \), if \(\Omega \) satisfies all constraints of Problem \(\{W \} \) and \(q_m^m = q_m^m \) for all \(1 \leq m \leq N-1 \).

Next we outline how to compute the expected revenue of the mechanism generated by \((q_1^1, \ldots, q_{N-1}^{N-1}) \). The problem is that one does not know for which \(m \) the maximum in \(\{3\} \) is attained. However, the right-hand sides of \(\{3\} \) and \(\{4\} \) can be used to compute an upper bound on the expected transfer, \(\tilde{R}^m \), of each outcome function \((q^m, t^m) \) in the ambiguous mechanism that is generated by \((q_1^1, \ldots, q_{N-1}^{N-1}) \). Since the generated ambiguous mechanism needs to be such that all the simple mechanisms yield the same expected transfer the relevant upper bound is the lowest one. More precisely, let \(\tilde{R}^m(q_1^1, \ldots, q_{N-1}^{N-1}) \) be the expected value of the sum of the terms in the right-hand sides of \(\{3\} \) and \(\{4\} \):

\[
\tilde{R}^m(q_1^1, \ldots, q_{N-1}^{N-1}) = \mathbb{E}_p[\theta] - p_m(1 - q_m^m) \theta_m - \sum_{n=1}^{N-1} q_n^m (1 - P_n) (\theta_{n+1} - \theta_n).
\]
Assumption 1. Let \bar{p}_n. If the designer chooses the ambiguous mechanism that is generated by the vector of allocations (q^1, \ldots, q^{N-1}), his expected revenue under the outcome function (q^n, t^m) cannot exceed $\tilde{R}^m(q^1, \ldots, q^{N-1})$. In fact, since we require that $\sum_{n=1}^{N} p_n t^m_n$ is constant in m it must be the case that the transfers in Ω are such that for each $1 \leq m \leq N-1$ we have

$$
\tilde{R}^m(\Omega) = \min_{1 \leq l \leq N-1} \tilde{R}^l(q^1, \ldots, q^{N-1}).
$$

That is, the lowest upper bound on the expected revenue is binding and thus yields the expected revenue of the ambiguous mechanism generated by (q^1, \ldots, q^{N-1}).

Since the seller is maximizing his expected revenue, an optimal choice of (q^1, \ldots, q^{N-1}) must solve the problem

$$
\max_{(q^1, \ldots, q^{N-1}) \in Q_{1 \leq m \leq N-1}} \min \tilde{R}^m(q^1, \ldots, q^{N-1}).
$$

where Q is the set of all vectors $Q=(q^1, \ldots, q^{N-1}) \in [0, 1]^{N-1}$ whose components are weakly increasing. The corresponding optimal transfers for the highest type, $(q_N^1, \ldots, q_N^{N-1})$, are then determined by condition (s), i.e. they are chosen so that condition (s) holds.

In order to streamline the presentation of the following results it is convenient to introduce an assumption. We relax this assumption in the Appendix.

Assumption 1. Let $p_n \theta_n \leq p_{n+1} \theta_{n+1}$ for all $n < N-1$.

For all $n \leq N-1$ we define the so called adjusted virtual valuation, \tilde{v}_n, as follows:

$$
\tilde{v}_n = p_n \theta_n - \sum_{s=n}^{N-1} \frac{p_n \theta_n}{p_s \theta_s} (1 - p_s)(\theta_{s+1} - \theta_s).
$$

We refer to \tilde{v}_n as adjusted virtual valuation because both its definition and its role are reminiscent of the role of virtual valuations. In particular, in Proposition 4 below we show that the optimal value of Q depends on the signs of the adjusted virtual valuations. In the statement of this result we exploit the fact that the adjusted virtual valuation can cross zero only from below. This is shown in the following lemma.

Lemma 6. If $\tilde{v}_n \leq 0$ for $1 \leq n \leq N-1$, then $\tilde{v}_m \leq 0$ for all $1 \leq m < n$.

We are now ready to state the main result of this section in which we characterize a solution of Problem (P'').

Proposition 3. Suppose that Assumption 4 holds. Then the following is true:

(i) If $\tilde{v}_1 > 0$, then $(\tilde{q}_1, \ldots, \tilde{q}_{N-1})=(1, \ldots, 1)$ solves Problem (P'').

(ii) If $\tilde{v}_1 \leq 0$, let $n^* = \max \{n : \tilde{v}_n \leq 0\}$ and let $\tilde{Q}=(\tilde{q}_1, \ldots, \tilde{q}_{N-1})$ be defined by

$$
\tilde{q}_n^m = \begin{cases}
0 & \text{if } 1 \leq n \leq n^* \\
1 - \frac{p_n \theta_n}{p_{n^*} \theta_{n^*}} & \text{if } n^* < n \leq N-1.
\end{cases}
$$

\tilde{Q} constitutes a solution of (P'').
Proposition 3 describes a solution of Problem (P). If the ambiguous mechanism $\hat{\Omega}$ is generated by \hat{Q} then $\hat{\Omega}$ is an optimal mechanism. With the exception of the transfers of the highest type, the payments specified in the ambiguous mechanism $\hat{\Omega}$ can be computed using (3). The highest type’s transfers are then chosen so that the expected revenue of each of the $N - 1$ simple mechanisms in Ω is equal to the optimal value of Problem (P), $\hat{R} = \min_{\Omega} \hat{R}^m(\hat{Q})$. We summarize these observations in the following corollary.

Corollary 2. Suppose $\hat{Q} = (\hat{q}_1, \ldots, \hat{q}_{N-1})$ solves Problem (P) and that \hat{R} is the problem’s value. Moreover, write (\hat{q}_m^*, \hat{t}_m), $m = 1, \ldots, N - 1$, for the m-th element of the (optimal) ambiguous mechanism generated by \hat{Q}. Then, \hat{t}_m^* is given by

$$
\hat{t}_m^* = \begin{cases}
\hat{q}_m^* \theta_n - \sum_{k=1}^{n-1} \hat{q}_k^*(\theta_{k+1} - \theta_k) & \text{if } 1 \leq n < N \\
(\hat{R} - \sum_{n=1}^{N-1} \hat{p}_n \hat{t}_n^*)/\hat{p}_N & \text{if } n = N.
\end{cases}
$$

If $\hat{v}_1 > 0$, then the optimal value of the designer’s problem is $\hat{R} = \theta_1$. Otherwise, the optimal expected revenue is

$$
\hat{R} = \tilde{R}^* = \mathbb{E}_\theta[\theta] - \hat{p}_N \theta_N^* - \sum_{n=n^*+1}^{N-1} \hat{q}_n^*(1 - \hat{p}_n)(\theta_{n+1} - \theta_n).
$$

In our environment the buyer values the good more than the seller. Allocative efficiency would therefore require that the good always be allocated to the buyer. According to Proposition 3 this is typically not the case in the revenue maximizing ambiguous mechanism. The seller might distort the allocative efficiency to increase the revenue, much like it is done in revenue maximizing simple mechanisms. In Section 4.3 we will see that unlike in the case of optimal simple mechanisms these distortions tend to vanish in environments with large type sets. An additional source of inefficiency is introduced through the ambiguity the agent faces when presented with an ambiguous mechanism. This inefficiency though regards only the highest type, for only his truth-telling payoffs vary across outcome functions. For all other types, the uncertainty embedded in the optimal ambiguous mechanism regards only the payoffs from deviations, which are never realized.

Finally, it is interesting to compare the expected revenue of an optimal ambiguous mechanism with the expected revenue of the best simple mechanism. Of course, every simple mechanism constitutes a (trivial) ambiguous mechanism. Thus, simple mechanisms cannot possibly deliver a higher revenue than the optimal ambiguous mechanism. But when is it the case that the designer can do strictly better by using a (non-trivial) ambiguous mechanism?

This cannot be the case when $Q = (1, \ldots, 1)$ solves Problem (P). The ambiguous mechanism that is generated by the allocation vector $Q = (1, \ldots, 1)$ yields an expected revenue of $R = \theta_1$, which is the same as the revenue obtained from a TOL offer (a simple mechanism) for θ_1.

Therefore, a necessary condition for the optimal ambiguous mechanisms to yield a higher expected revenue than the best simple mechanism is that $Q = (1, \ldots, 1)$ is not a solution to Problem (P). We will argue that this condition is also sufficient. Towards that, assume that $Q = (1, \ldots, 1)$ is not a solution of (P). We split the analysis into two cases, depending on whether or not a TOL offer at the price θ_1 is an optimal simple mechanism. In the first case, the highest expected payoff from a simple mechanism, \hat{R}_1, is θ_1. On the other hand, since $Q = (1, \ldots, 1)$, which also generates a payoff equal to θ_1, is not a solution to Problem (P), the seller’s payoff from an optimal ambiguous mechanism, \hat{R}, is larger than θ_1 and therefore larger than the seller’s payoff from an optimal simple mechanism; i.e. $\hat{R} > \hat{R}_1$.

Appendix, we show that in this case there is a revenue whenever a TOL offer at the price mechanisms. In particular, ambiguous mechanisms allow the seller to achieve a strictly larger sufficient condition for that to be the case can be given in terms of the optimal simple (potentially simpler) condition for this to be the case can be given in terms of the adjusted virtual valuation of the lowest type). Notice though that a (potentially simpler) sufficient condition for that to be the case can be given in terms of the optimal simple mechanisms. In particular, ambiguous mechanisms allow the seller to achieve a strictly larger revenue whenever a TOL offer at the price \(\theta_1 \) is not an optimal simple mechanism. This follows quite readily from the preceding proposition: if the optimal simple mechanism generates a larger revenue than \(\theta_1 \), then so must also the best ambiguous mechanism. But then the ambiguous mechanism generated by \(Q=(1,...,1) \) cannot be optimal and thus by Proposition it follows that the best ambiguous mechanism must do better than the best simple mechanism. So only when computing the best simple mechanism yields a TOL offer at the price \(\theta_1 \) is there a chance that this simple mechanism remains optimal even if one allows for ambiguous mechanisms.

We conclude this section with a three-type example that illustrates the above results.

Example 1. (Optimal ambiguous mechanisms in the three type case). Suppose that \(\Theta = \{\theta_1, \theta_2, \theta_3\} \) and Assumption \(\Box \) holds. The formula for the optimal \(Q \) given in Proposition \(\Box \) conditions on the signs of the adjusted virtual valuations which are given by

\[
\tilde{v}_1 = p_1\theta_1 - (1-p_1)(\theta_2 - \theta_1) - \frac{p_1\theta_1}{p_2\theta_2}p_3(\theta_3 - \theta_2) = \theta_1 - (1-p_1)\theta_2 - \frac{p_1\theta_1}{p_2\theta_2}p_3(\theta_3 - \theta_2)
\]

\[
\tilde{v}_2 = p_2\theta_2 - (1-P_2)(\theta_2 - \theta_2) = (p_2 + \theta_3)\theta_2 - p_3\theta_3.
\]

According to Proposition \(\Box \) it is optimal to set \(q_1^1 = q_2^2 = 1 \) if \(\tilde{v}_1 > 0 \). If \(\tilde{v}_1 \leq 0 \) then \(q_1^1 = 0 \) is optimal. The optimal value of \(q_2^2 \) depends in this case on the sign of \(\tilde{v}_2 \). More specifically, \(q_1^1 = q_2^2 = 0 \) is optimal only if we also have \(\tilde{v}_2 \leq 0 \). If this condition does not hold (so that \(\tilde{v}_1 \leq 0 \) and \(\tilde{v}_2 > 0 \)) we obtain the solution \(q_1^1 = 0 \) and \(q_2^2 = 1 - p_1\theta_1/p_2\theta_2 \).

The transfers in the latter case are \(t_1^1 = 0, t_2^1 = \theta_2, t_3^1 = \theta_2 + p_1\theta_1(\theta_3 - \theta_2)/p_2\theta_2 \) and \(t_1^2 = \theta_1, t_2^2 = (1 - p_1\theta_1/p_2\theta_2)\theta_2, t_3^2 = \theta_2 + p_1\theta_1(\theta_3 - \theta_2)/p_2\theta_2 \). The expected value of these transfers is \(R = (p_2 + p_3)\theta_2 + p_1p_3\theta_1(\theta_3 - \theta_2)/p_2\theta_2 \). The condition \(\tilde{v}_2 > 0 \) implies that a TOL offer at price \(\theta_2 \) yields a higher payoff for the seller than an offer at price \(\theta_3 \). Therefore, a revenue maximizing simple mechanism for the seller is either an offer at price \(\theta_2 \) or \(\theta_1 \). In the first case, the ambiguous mechanism clearly yields a higher profit since \(R - (p_2 + p_3)\theta_2 = p_1p_3\theta_1(\theta_3 - \theta_2)/p_2\theta_2 > 0 \). In the second case observe that the condition \(\tilde{v}_1 \leq 0 \) is equivalent to \(R - \theta_1 > 0 \). Since \(\theta_1 \) is the revenue

22. This assumption is made solely for ease of exposition.
of the optimal simple mechanism we can conclude that the ambiguous mechanism does strictly better than the best simple mechanism if \(\bar{\nu}_1 < 0 \). If \(\bar{\nu}_1 = 0 \), then \(q^1_1 = q^2_2 = 1 \) is optimal too. In this case both the optimal simple mechanism and the optimal ambiguous mechanism yield an expected revenue of \(\theta_1 \).

4.4. Increasing the number of types

Consider the ambiguous mechanism generated by \(Q = (0, \ldots, 0) \). This mechanism takes a particularly simple form: the transfer rule corresponding to the \(m \)-th outcome function, \(t^m \), is given by

\[
 t^m_n = \begin{cases}
 0 & \text{if } n = m \\
 \theta_n & \text{if } n \neq m, N \\
 \theta_N - (p_m \theta_m - p_m \theta_m) / p_N & \text{if } n = N.
 \end{cases}
\]

The expectation of this transfer is

\[
 E_{\theta} = E[p \theta] - p_m \theta_m.
\]

So the ambiguous mechanism generated by \(Q = (0, \ldots, 0) \) extracts all of the agent’s (expected) surplus except for type \(\theta_m \)’s contribution, \(p_m \theta_m \). These observations suggest that in environments with large type sets the designer should be able to essentially extract the full rent from the agent. This is confirmed in the following proposition, which gives a more precise formulation of this insight.

Proposition 5. (Full surplus extraction in the limit). Let \((\Theta^N, p^N) \) be a sequence of finite environments, such that \(|\Theta^N| = N \). Assume the limit \(\lim_{N \to \infty} E_{\theta^N} \theta^N \) exists. Moreover, let \(\bar{m}_N \) be such that \(p_{\bar{m}_N} \theta_{\bar{m}_N} \geq p_1 \theta_1 \) for all \(1 \leq l \leq N - 1 \) and write \(R^N \) for the revenue that the designer can generate with the an optimal ambiguous mechanism in the \(N \)-th environment. If \(p_{\bar{m}_N} \theta_{\bar{m}_N} N \to \infty \to 0 \) then

\[
 \frac{R^N}{E_{\theta^N} \theta^N} N \to \infty \to 1.
\]

That is, in the limit, the designer is able to extract all of the agent’s surplus.

Proof. By our preceding observations, for all \(N \) we have

\[
 E_{\theta^N} \theta^N \geq R^N \geq E_{\theta^N} \theta^N - p_{\bar{m}_N} \theta_{\bar{m}_N}.
\]

Dividing both sides by \(E_{\theta^N} \theta^N \) and taking the limit yields the result. ||

In order to get a better intuition for this result, consider again the type of ambiguous mechanism described above. In such a mechanism, for each \(n < N \), the outcome function \((q^n, t^n) \) assigns the good with probability one to every type except type \(\theta_n \), who is excluded from trade (i.e. he receives the good with probability zero). Moreover, under \((q^n, t^n) \) all types, except \(\theta_n \) and \(\theta_N \), are charged their valuations. The fact that under \((q^n, t^n) \) type \(\theta_n \) does not get the good not only implies that type \(\theta_n \) himself cannot get a strictly positive payoff from revealing his type, but it

23. Remember that \(\Omega = \{(q^1, t^1), \ldots, (q^{N-1}, t^{N-1})\} \) is generated by \(Q \) if \(\Omega \) satisfies properties (Un), (Min), and \((q^1, q^2, \ldots, q^{N-1}) = Q \).
also means that no other type can achieve a strictly positive payoff from reporting θ_n. Thus, the outcome function (q^n, t^n) guarantees that (downward) deviations towards θ_n are unattractive. In the same way each other outcome function (q^m, t^m), $m \neq n$ makes sure that the agent does not have an incentive to report θ_m unless that is his true type. Since each single outcome function in the ambiguous mechanism has to take care of the deviation incentives towards just one type, they can be chosen freely (i.e. unconstrained by incentive considerations) for all other possible reports. In particular, it is feasible to specify that for each other message (except θ_N) the agent gets the good for sure in exchange of a payment that corresponds to his report. The highest type does not necessarily have to pay his valuation since his transfers are used to guarantee consistency across outcome functions.

In the case of simple mechanisms, all deviation incentives have to be taken care of by a single outcome function. In order to do so, this single outcome function needs to be distorted much more than each single element of an ambiguous mechanism.

The downside of a type’s exclusion from trade is that no rent can be extracted from him. Since all outcome functions must yield the same expected revenue, all of them can extract only as much as the one that excludes the type with the largest contribution to the expected surplus. If the set of types increases and the likelihood of each single type decreases, the cost of excluding each single type decreases as well.

In a context with a continuum of types and an atomless type distribution, the weight of each single type is exactly zero. For such environments, we obtain the following corollary to Proposition 5.

Corollary 3. (Full surplus extraction). Suppose that Θ is a compact interval in \mathbb{R} and that the type distribution P is atomless. Then the ambiguous mechanism, $\Omega = \{(q^\theta, t^\theta), \theta \in \Theta\}$, where (q^θ, t^θ) is defined by

$$
q^\theta_{\theta'} = \begin{cases} 0 & \text{if } \theta' = \theta \\ 1 & \text{else} \end{cases},
$$

$$
t^\theta_{\theta'} = \begin{cases} 0 & \text{if } \theta' = \theta \\ \theta' & \text{else}, \end{cases}
$$

is individually rational, incentive compatible and consistent. Moreover, Ω extracts the full surplus from the agent, that is $R(\Omega) = \mathbb{E}_P[\theta]$.

Corollary 3 tells us that the designer can achieve full surplus extraction by using an appropriately constructed ambiguous mechanism. Even more interestingly, we learn from this result that full surplus extraction can be achieved without knowing the details of the type distribution. All that the seller needs to know is that the set of types is large (i.e. a continuum) and that the type distribution is not too concentrated on single points (i.e. atomless). Notice also that in this case the mechanism is ex post efficient with probability one. That is, each simple mechanism transfers the good to the agent with probability one.

5. NAIVE AMBIGUOUS MECHANISMS

In the preceding sections, our attention has been focused on the characterization of optimal ambiguous mechanisms. However, optimal ambiguous mechanisms can be rather complex objects since their size (i.e. the number of outcome functions they are composed of) essentially coincides with the size of the type set. This observation naturally triggers the question if complexity is a necessary feature not only of optimal ambiguous mechanisms but of all “well-performing” ambiguous mechanisms. The answer to this question is of foremost importance if we want to gauge the applicability of ambiguous mechanisms in real-world settings. In order to show that
the answer is indeed negative in what follows we construct a class of ambiguous mechanisms which, despite their very basic and intuitive structure, outperform all simple mechanisms. We refer to this type of ambiguous mechanisms as naive ambiguous mechanisms.

Suppose that there is an agent with valuations distributed over [0, 1] with a distribution \mathcal{F} that has strictly positive density on the whole interval. Let \hat{p} be the optimal TOL offer for the seller; notice that $\hat{p} > 0$. Let $\hat{\theta} \in [\hat{p}/2, \hat{p}]$ be defined by $F(\hat{p}) - F(\hat{\theta}) = F(\hat{\theta}) - F(\hat{p}/2)$. The point $\hat{\theta}$ splits the interval $[\hat{p}/2, \hat{p}]$ into two equiprobable intervals.

The naive ambiguous mechanism Ω, corresponding to the TOL price \hat{p}, consists of two simple mechanism (q_1, t_1) and (q_2, t_2). Both simple mechanisms allocate the good to the buyer at the price \hat{p} if he reports a valuation above \hat{p} and do not allocate the good to the buyer (nor make him pay anything) if he reports a valuation below $\hat{p}/2$. If the agent reports a type in the interval $[\hat{p}/2, \hat{p}]$ the simple mechanism (q_1, t_1) allocates the object to him only if his report is in $[\hat{\theta}, \hat{p}]$ in which case he pays $\hat{p}/2$. The simple mechanism (q_2, t_2), on the other hand, awards the object to the agent who reports a type in $[\hat{p}/2, \hat{p}]$ only if that report is in $[\hat{p}/2, \hat{\theta}]$, again at price $\hat{p}/2$. In the other cases the agent does not receive the object nor pays anything.

It is easy to verify that reporting truthfully is optimal for the buyer. If his type is above \hat{p} he obtains a strictly positive payoff by accepting the price \hat{p} (reporting a type above \hat{p}). On the other hand, since the buyer contemplates all distributions over the two simple mechanisms as possible, he expects not to be allotted the object when his type is above $\hat{p}/2$ and he reports a type in $[\hat{p}/2, \hat{p}]$. Therefore his payoff from reporting a type in that interval is 0. Types below $\hat{p}/2$ would expect to obtain the object at the price $\hat{p}/2$ if they reported a type in $[\hat{p}/2, \hat{p}]$ and would thus receive a negative payoff.

The seller obtains an expected payoff of $[1 - F(\hat{p})]\hat{p} + [F(\hat{p}) - F(\hat{p}/2)]\hat{p}/4$ from both simple mechanisms. That is, his expected payoff is $[F(\hat{p}) - F(\hat{p}/2)]\hat{p}/4$ larger than the expected payoff from the optimal simple mechanism.

The above described direct mechanism can be implemented in a very simple way. The seller offers the agent to choose between the following three options: (1) getting the object with certainty at the price \hat{p}; (2) facing an Ellsberg urn with an unknown composition of balls of two colours, or (3) walking away. If the agent decides to take the ambiguous lottery and guesses correctly the colour of the ball that is drawn from the urn he obtains the object at the price $\hat{p}/2$ (50% discount), otherwise he does not obtain the object. For types above \hat{p} it is optimal to choose the object at the price \hat{p} and for the types below $\hat{p}/2$ to walk away. There is an optimal strategy for types in $[\hat{p}/2, \hat{p}]$ such that the types in this interval below $\hat{\theta}$ choose one colour and the types above chose the other. There are of course other optimal strategies for the agent depending on which of the colours the types in the interval $[\hat{p}/2, \hat{p}]$ choose. This notwithstanding, the seller cannot make a smaller profit than he makes from the optimal simple mechanism.A naive mechanism can thus be thought of as a choice between a TOL offer and an ambiguous lottery that offers the chance of getting the good at a 50% discount.

24. For example, the seller tells the agent that the urn contains two balls and that the balls are either blue or yellow, but does not tell the agent how many blue and yellow balls there are in the urn.

25. Notice that if the seller instructs the buyer to choose one colour if his type is in $[\hat{\theta}, \hat{p}]$ and the other if his type is in $[\hat{p}/2, \hat{\theta}]$ the seller in expectation receives the same payoff regardless of the composition of the colours in the urn, thereby achieving something akin to consistency. However, even if he delegates the choice of colours in the urn to the third party and does not instruct the buyer on what colour to choose his payoff is bounded below by \hat{p} as long as the buyer believes any composition of the balls is possible.
6. DISCUSSION AND EXTENSIONS

6.1. Payoff irrelevant information and the “splitting” of types

In Subsection 4.4, we have seen that the share of the surplus that the designer can extract from the agent is the larger “the more types there are”. In particular, if types are distributed atomlessly on an interval, then full surplus extraction is possible. In this section, we use this insight to argue that the principal should not only elicit the agent’s payoff types, but that he can benefit also from conditioning outcomes on non-payoff-relevant information that the agent may hold.

In order to see this, consider a setting where the agent’s type is bi-dimensional. The first component of the agent’s type, \(\theta \in \Theta_1 = \{ \theta_1, \ldots, \theta_N \} \), represents his willingness to pay for the good. The other component, \(v \), describes some unobservable characteristic of the agent which has no bearing on the value that the agent assigns to the good. For convenience, we assume that \(v \) belongs to the finite set \(V = \{ v_1, \ldots, v_K \} \in \mathbb{R} \).

From a purely technical point of view, the crucial property of the previously considered single dimensional setting was the fact that there the type set comes with a natural order along which the agent’s willingness to pay increases. But now observe that the same property holds in our new bi-dimensional setting if we order the type set \(\Theta_1 \times V \) in a lexicographic way, i.e. if types \((\theta', v') \) and \((\theta'', v'') \) are ordered according to their first component as long as those do not coincide, and according to their second component whenever \(\theta' = \theta'' \) holds. This means that the characterization result in Proposition 3 and all associated results on the achievable expected revenue reported in Corollary 2, Proposition 5, and Corollary 3 apply to the bi-dimensional setting discussed above.

In particular, it follows that the expected revenue (typically) increases when the number of types increases. But in this new setting an increase in the number of types can be achieved by simply adding more payoff irrelevant type components (i.e. by increasing \(K \)). In the example below we show this for a situation where we double the number of types by moving from a setting with \(N = 2, K = 1 \) (i.e. two payoff relevant type components and a trivial payoff irrelevant type dimension) to a setting with \(N = 2, K = 2 \).

Intuitively speaking, using the payoff irrelevant part of a type serves the purpose of “splitting” payoff types into multiple types, each of which has a smaller probability. In the preceding subsection, we showed why it is desirable from the designer’s perspective to have many types that occur with small probabilities. That argument does not rest on the assumption that types are strictly different in terms of their payoff relevance. Instead, it applies equally to situations where the number of types is increased without changing anything in the payoff relevant dimension of the type distribution. The following example demonstrates this.

Example 2. (The benefits of eliciting payoff irrelevant information). Consider the following simple environment. The type set is given by \(\Theta \times V \), where \(\Theta = \{ 1, 3 \} \) and \(V = \{ L, H \} \). The type distribution is uniform and the type set is endowed with the obvious lexicographic ordering.

If the principal ignores the payoff irrelevant part of the agent’s type then for him the situation is as if he was facing an agent with only two (equally likely) types, 1 and 3. By Corollary 2 the best mechanism that the designer can offer in an environment with only two types is a simple mechanism. It is straightforward to see that the optimal simple mechanism, \((\tilde{q}, \tilde{t})\), is defined by \((\tilde{q}(1), \tilde{t}(1)) = (0, 0)\), \((\tilde{q}(3), \tilde{t}(3)) = (1, 3)\). The expected revenue generated by this mechanism is \(\tilde{R} = 3/2 \).

Now assume that the designer takes into account also the payoff irrelevant component of the agent’s type. Then he can offer the ambiguous mechanism \(\Omega \) composed by the outcome functions described in the Table 3.

The above represented mechanism generates an expected revenue of \(7/4 \) which strictly exceeds the expected revenue that the best simple mechanism produces \((3/2) \). This confirms
the observations that we have made in the preceding paragraphs: the seller can extract a larger share of the surplus by constructing a mechanism that conditions on payoff irrelevant components of the type.

6.1.1. “Creation” of types. In the preceding discussion, we have seen that the seller can benefit from adopting an ambiguous mechanism that elicits not only payoff relevant information but also payoff irrelevant aspects of the agent’s type. Therefore even if the agent does not have such information to start with, the seller should induce him to acquire it. A simple way to achieve this would be to construct a randomization device that privately discloses the outcome of the randomization to the buyer. If the random device replicates an atom-free distribution then the buyer’s post draw private information must also be atom free. We have seen earlier that in such a situation the seller can extract the full surplus from the buyer.

Notice that the above discussed “type creation process” must take place before the revelation game is played. Thus, ambiguous mechanisms that are based on type creation do not belong to the class of static ambiguous mechanisms that we have considered so far. Consequently, the discussion in the preceding paragraph is not in contradiction with our findings in the earlier sections where we have derived the optimal ambiguous mechanism for a given finite set of types. Moreover, the possibility of creating types does not reduce the relevance of those findings. On the one hand, the analysis for a given type set is by itself of theoretical interest. On the other hand, that analysis constitutes the basis upon which our discussion of the benefits of type splitting rests. Finally, also from a more applied perspective the preceding results retain their importance. We have pointed out that optimal ambiguous mechanisms may well be prohibitively complex to be applied in real-world settings even when the possibility of type splitting/creation is not considered. Further type splitting or type creation would require to add more outcome functions and thus make the ambiguous mechanism even less suitable for application. In situations where complexity considerations have to be taken into account, the seller needs to understand the trade off between the costs and benefits of creating more types. Our results allow one to determine the benefits of larger type sets.

6.2. Preferences

6.2.1. The agent’s preferences. Throughout our analysis, we have assumed that the agent’s valuation is (bi-)linear and that his ambiguity aversion can be captured by the Gilboa–Schmeidler model. In this section, we comment on the role of these assumptions.

The linearity of the agent’s valuation function—risk neutrality—is crucial in the final steps of the characterization of the optimal ambiguous mechanism (i.e. Proposition 3 relies on this assumption). In all results up to Lemma 4 we have only exploited the increasing difference property of the linear valuation function. That is, all those results go through for valuation functions that exhibit increasing differences. The result that under an atomless type distribution the principal can extract the full surplus goes through in even more general settings. If the agent’s

<table>
<thead>
<tr>
<th>((\theta, v))</th>
<th>((1, L))</th>
<th>((1, H))</th>
<th>((3, L))</th>
<th>((3, H))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((q^{1, L}, p^{1, L}))</td>
<td>(0, 0)</td>
<td>(1, 1)</td>
<td>(1, 3)</td>
<td>(1, 3)</td>
</tr>
<tr>
<td>((q^{1, H}, p^{1, H}))</td>
<td>(1, 1)</td>
<td>(0, 0)</td>
<td>(1, 3)</td>
<td>(1, 3)</td>
</tr>
<tr>
<td>((q^{3, L}, p^{3, L}))</td>
<td>(1, 1)</td>
<td>(1, 1)</td>
<td>(2/3, 2)</td>
<td>(1, 3)</td>
</tr>
</tbody>
</table>
preferences over allocation-transfer pairs \((x, \tau)\) are described by the function \(u(x, \tau, \theta)\), where \(x\) is a fraction of the good, then an ambiguous mechanism like the one used in Corollary 3 can be constructed whenever the problem
\[
\max_{(q(\theta), t(\theta)) \in \mathcal{X} \times \mathbb{R}} \mathbb{E}_{\pi}[u(\theta)]
\]
\[
s.t. \quad u(q(\theta), t(\theta), \theta) \geq u(0, 0, \theta) \quad \forall \theta \in \Theta,
\]
admits a solution. If \((q^*, t^*)\) solves this problem, then the ambiguous mechanism \(\Omega = \{(q^0, t^0), \theta \in \Theta\}\) whose elements are defined by
\[
q^0_\theta = \begin{cases}
0 & \text{if } \theta' = \theta \\
q^*(\theta') & \text{else }
\end{cases},
\]
\[
t^0_\theta = \begin{cases}
0 & \text{if } \theta' = \theta \\
t^*(\theta') & \text{else }
\end{cases},
\]
extracts the full surplus.

A concern regarding our assumptions on preferences might be the question to what extent our results are driven by the way in which we model ambiguity aversion. MMEU certainly constitutes a rather stark model of ambiguity aversion. Our analysis heavily exploits the tractability of these preferences in the derivation of the optimal ambiguous mechanism with finite types. While we do not know how an optimal mechanism would look like for an alternative model of ambiguity aversion, we can say that the basic idea on which the analysis in this article builds, does generalize.

The most fundamental insight of this article is that a principal who faces an ambiguity averse agent might be able to exploit his ambiguity aversion by offering an ambiguous mechanism. In the following example, we show that this insight applies also in environments where the agent’s attitude towards uncertainty is represented by a model of smooth ambiguity aversion.

Example 3. (Smooth ambiguity aversion). The setup is as in the example considered in Section 2 except for the agent’s attitude towards ambiguity. That is, we have \(\Theta = \{1, 2, 4\}, p = (1/4, 1/4, 1/2), u(x, \tau, \theta) = x\theta - \tau\).

Instead of assuming MMEU preferences on the agent’s side, here we consider the case of an agent who is smoothly ambiguity averse in the sense of Klibanoff et al. (2005). In particular, we assume that when faced with a (direct) ambiguous mechanism \(\Omega\), type \(\theta\) of the agent evaluates messages according to the following procedure. First, he calculates for each message \(\hat{\theta} \in \Theta\) and each possible probability \(\pi \in \Delta(\Omega)\) his expected utility, i.e.
\[
\mathbb{E}_{\pi}[u(q(\hat{\theta}), t(\hat{\theta}), \theta)] = \mathbb{E}_{\pi}[q(\hat{\theta})\theta - t(\hat{\theta})].
\]

In a second step, he evaluates the thus obtained expected utility values with the increasing and concave function \(\phi : \mathbb{R} \to \mathbb{R}\). Finally, the transformed utility indices are integrated with respect to some probability measure \(\mu\) over \(\Delta(\Omega)\). The payoff that type \(\theta\) of the agent associates with reporting type \(\hat{\theta}\) is
\[
U(\hat{\theta}, \theta) = \mathbb{E}_{\mu}\left\{\phi\left(\mathbb{E}_{\pi}[q(\hat{\theta})\theta - t(\hat{\theta})]\right)\right\}.
\]

For the sake of concreteness, in what follows we assume that \(\phi(x) = 1 - \exp(-7x)\), i.e. \(\phi\) has the shape of a CARA function. As for \(\mu\), we assume that it is uniform over \(\Omega\) (or the set of

26. We continue to assume that by opting out from the mechanism each type of the agent obtains the allocation-transfer pair \((0, 0)\).
TABLE 4
An ambiguous mechanism with $R = t/2 + 1/4$ (under truth-telling)

<table>
<thead>
<tr>
<th>θ</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1^1, t^1)</td>
<td>(0,0)</td>
<td>(1,1)</td>
<td>(1,1)</td>
</tr>
<tr>
<td>(q_2^2, t^2)</td>
<td>(1,1)</td>
<td>(0,0)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>

TABLE 5
Payoffs for the ambiguous mechanism in the preceding table

<table>
<thead>
<tr>
<th>$\theta \setminus \hat{\theta}$</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\phi(0)$</td>
<td>$\phi(0)$</td>
<td>$\phi(1-t)$</td>
</tr>
<tr>
<td>2</td>
<td>$\phi(1)/2$</td>
<td>$\phi(1)/2$</td>
<td>$\phi(2-t)$</td>
</tr>
<tr>
<td>4</td>
<td>$\phi(3)/2$</td>
<td>$\phi(3)/2$</td>
<td>$\phi(4-t)$</td>
</tr>
</tbody>
</table>

degenerate distributions over Ω_1). This seems a natural assumption given that we only allow for consistent ambiguous mechanisms. Consistency means that the designer is indifferent between the different outcome functions of the ambiguous mechanism. Thus there is no reason for the agent to treat the different outcome functions asymmetrically.\(^{27}\)

Returning to our example, consider the direct ambiguous mechanism $\Omega_1 = \{(q_1^1, t^1), (q_2^2, t^2)\}$, described in the Table 4.

It is straightforward to verify that under truth-telling the expected revenue of both outcome functions is $R = t/2 + 1/4$. We will now solve for the largest t such that this mechanism is incentive compatible.

Observe that as long as $t \leq 4$ a truthful report guarantees each type a payoff that is no smaller than the value of the outside option, $\phi(0)$. Thus, the ambiguous mechanism Ω_1 is individually rational. It is also easily seen that the two lowest type’s incentive compatibility constraints are satisfied if $t > 2$ ($\phi(0) > \phi(1-t)$ and $\phi(1)/2 > \phi(2-t)$). The highest type has no incentive to deviate if $\phi(4-t) \geq \phi(3)/2$. The largest t which satisfies this condition is approximately $t = 3.9$.

With $t = 3.9$ the ambiguous mechanism generates an expected revenue of $R = t/2 + 1/4 = 2.2$ which exceeds the revenue of the best simple mechanism by 0.2.

6.2.2. The seller’s preferences.

Throughout the article, we assumed that the principal is ambiguity-neutral. This was done mainly for ease of exposition. The optimality of the ambiguous mechanism that emerged from Proposition 3 in the class of consistent direct ambiguous mechanisms depends only on the seller’s risk neutrality, not on his attitude towards ambiguity. That is, a seller who chooses the distribution over outcome functions knows this distribution and is thus not facing any ambiguity. A similar conclusion continues to hold even if the seller were to delegate the choice of an outcome function (or a distribution over those) to an uninterested third party or some mechanical selection device. Ambiguity associated with the behaviour of the third party could never assume payoff relevance as long as all outcome functions yield the same expected revenue as is required by the consistency condition.

Notice though that the motive for imposing consistency disappears if the choice of the outcome function (out of an ambiguous mechanism) is not made by the seller himself but is delegated to

\(^{27}\) While the assumption of a uniform μ over Ω is convenient in that it simplifies the presentation of our example, we should point out that it is not an assumption that is necessary for our argument.

\(^{28}\) Remember that the agent’s belief is described by the uniform distribution over the degenerate distributions on Ω.

an uninterested third party or some mechanical ambiguity device. When the seller chooses an outcome function (or a distribution over those), then the buyer should assume that the seller picks the one that is best for himself. Thus, the buyer could only ever perceive the choice of the outcome function as ambiguous if he thought that the principal was indifferent over some outcome functions. There is no point in requiring this same indifference condition when it is not the seller who makes the choice of the outcome function. Therefore, in the case of an ambiguity averse seller, in principle one would have to consider also non-consistent ambiguous mechanisms (in combination with the use of external ambiguity devices). Fortunately, if the seller is a risk neutral maxmin expected utility maximizer, then enlarging the set of admissible ambiguous mechanisms neither changes the value of his problem nor alters the fact that there must be an optimal ambiguous mechanism among the consistent ones.

Without the requirement that every outcome function in an ambiguous mechanism needs to yield the same expected revenue Problem (P) has to be replaced by the following problem:

\[
\max_{R \in \mathbb{R}, \Omega \subseteq X^T \times \mathbb{R}^T} R \quad \text{(P-2)}
\]
\[
\text{s.t. } R \leq \min_{(q,t) \in \Omega} \mathbb{E}_p \left[t(\theta) \right], \quad \text{(C')} \]

Note that the only difference between this problem and Problem (P) is that the constraint (C) in the latter is replaced by the constraint (C') in Problem (P-2). (C') represents the fact that the payoff of a seller who is MMEU ambiguity averse and who delegates the choice of the outcome function that will be implemented to an external “ambiguity device” (uninterested third party), is given by the minimum of the expected revenues that the outcome functions in his ambiguous mechanism generate.

The following result shows that the solutions of Problem (P) that we have characterized earlier also solve Problem (P-2).

Proposition 6. The ambiguous mechanism generated by the allocation vector \(\hat{Q}\) described in Proposition 3 solves Problem (P-2). That is, it remains an optimal ambiguous mechanism when the seller has MMEU preferences and one does not require consistency.

The intuition for this result is rather straightforward: given that the principal’s payoff is determined by the outcome function that delivers the lowest expected revenue, he might as well choose to start with a mechanism that contains only outcome functions that yield the same expected revenue. Suppose we are given a mechanism \(\Omega\) that does not satisfy this condition. Let \(R\) denote the minimum of the expected revenues of the outcome functions in \(\Omega\). By appropriately lowering the transfers of the highest type in all outcome functions who do not produce an expected revenue of \(R\), one can obtain a mechanism that is still downward incentive compatible and individually rational. By applying Lemmata 1 through 3, this mechanism can be further transformed to obtain a new mechanism that is also upward incentive compatible and generates an expected revenue of at least \(R\).

6.3. Surplus extraction: ambiguity aversion versus risk aversion

In Section 4.4 we have shown that with the use of ambiguous mechanisms the principal can extract the entire surplus from the agent provided that the agent has MMEU preferences and his type set is “large enough”. This result is related to the findings of Matthews (1983) and
Maskin and Riley (1984) who have studied mechanism design problems with risk averse agents. Matthews (1983) shows that if the type set is a continuum and the agent has a valuation function that exhibits constant absolute risk aversion, then the share of the surplus that the principal can extract from the agent increases as the agent’s coefficient of absolute risk aversion increases; in particular, when the agent becomes infinitely risk averse, the principal can appropriate the entire surplus.

Formally, the case of an ambiguity neutral and risk averse agent with a CARA utility function resembles the case of an agent who is risk neutral and smoothly ambiguity averse with a CARA transformation function ϕ. Moreover, the MMEU preferences à la Gilboa and Schmeidler (1989) that we assume can be seen as the limit of ambiguity averse preferences that are CARA-smooth, when the CARA coefficient tends to infinity. In the light of these observations, our full rent extraction result for the case where the type set is a continuum, may seem to be similar to the results in Matthews (1983).

But the analogy between risk aversion and stochastic mechanisms on the one hand and (smooth) ambiguity aversion and ambiguous mechanisms on the other hand is not quite as close as it appears at first sight. The central difference between the two cases lies in the fact that in the case of stochastic mechanisms the distribution of the outcomes is determined by the designer. That is, the distribution of the outcomes is given by an objective probabilistic distribution that is a choice variable of the principal. There is no analogous instrument in the case of smooth ambiguity aversion.

Even though in that model uncertainty is described by a distribution (μ) over (distributions of) outcomes, the higher level distribution (μ)—which is the mathematical analogue of the probability distributions over outcomes in a stochastic mechanism—does not allow for an objective interpretation. In particular, one cannot think of it as a variable that the principal can choose and can commit to in the way he chooses and commits to the distributions in a stochastic mechanism. Instead, the higher level distribution (μ) is only a description of the uncertainty that the agent perceives and—by the very idea that underlies the concept of uncertainty—there is no sense in which this perception could be given an objective interpretation as can be done in a setting with risk aversion by considering only objective probabilistic distribution of outcomes. Thus, unlike in the case of a stochastic mechanism which fully pins down the perceptions of the risk averse agent by specifying in an objective way all aspects of the distribution of the outcomes, an ambiguous mechanism can always just determine the support of the distribution that describes the agent’s perceptions. All remaining aspects of the agent’s uncertainty perception are necessarily of a purely subjective nature.

While on the one hand the fact that the higher order distribution in the smooth ambiguity model describes the subjective uncertainty perceptions of the agent means that it is outside the direct control of the principal, on the other hand it also implies that it should be considered as endogenous with respect to the principal’s choices. In particular, this endogeneity of the agent’s perceptions would call for the use of the consistency concept in an environment with a smoothly ambiguity averse agent for the same reasons we have adopted it in our setting with MMEU preferences. Notice that there is no analogous constraint that has to be considered in a setting with risk aversion and stochastic mechanisms. Thus, the conceptual differences between the two cases also translate into important differences in their mathematical treatment.

29. By the term “transformation function” we mean the function which is applied to transform the expected utility values. It is standard to denote this function by ϕ as we do in Example 2.
30. See the discussion of this issue in Klibanoff et al. (2012).
6.4. **Consistency**

In the design of ambiguous mechanisms, we required that all the outcome functions yield the same ex-ante expected profit, assuming that the buyer reports his type truthfully; we termed this requirement consistency. Here we provide further insight into why consistency is desirable and what would be the implications of dropping or weakening the assumption.

Suppose that there were no restrictions on the outcome functions, and suppose the seller were to announce that the ambiguous mechanism consists of an outcome function that gives the buyer the good with probability one at the price equal to the type he reported, and an outcome function that never gives the object to the buyer and never charges him any money. That is, the seller announces that he will commit to some randomization over these two outcome functions but does not reveal the randomization he commits to. If the buyer were to entertain a belief that contains all distributions over the two outcome functions, he could never expect to get payoff larger than zero from any of the available reports. Since reporting truthfully would yield a payoff exactly equal to zero doing so would indeed be optimal for him. However, foreseeing that the seller would have a strict incentive to choose a randomization that strongly favors the outcome function that prescribes to transfer the good to the agent at a price equal to his (truthfully) reported type. Therefore, in a sense, the seller would be fooling the buyer, or rather, the buyer would be fooling himself by believing that the seller might choose the outcome function that never gives him the object with a high probability. Consistency serves to prevent this type of “incoherent” beliefs by the buyer. For more on game theoretic concepts under ambiguity aversion see also Azrieli and Teper (2011) and Bade (2011).

Rather than requiring that all outcome functions yield the same expected profit one could try to slightly weaken the consistency assumption. The ideas here are easiest to explain within an example. Suppose that there are three possible valuations of the buyer, as in the motivating example, and suppose that the seller offers an ambiguous mechanism consisting of the following two outcome functions: \((q^1, t^1) = [(1,1), (0,0), (1,4)]\), \((q^2, t^2) = [(0,0), (1,2), (1,4)]\). This mechanism satisfies a weaker requirement that for every outcome function there exists a type such that the seller would prefer the outcome function if the agent was of that type. In particular, if the buyer reports truthfully, the seller prefers the first outcome function if the buyer is the lowest type and the second outcome function if the buyer is the middle type. However, if the buyer reports truthfully the second outcome function generates a higher expected payoff than the first, therefore the mechanism does not satisfy the consistency condition. Since the seller needs to commit to a randomization over the two outcome functions at the beginning, he would strongly prefer a randomization that attaches a high probability to the second outcome function. Therefore, this weakening of the consistency assumption results in a similar problem as dropping the assumption altogether.

7. **CONCLUSION**

In this article, we have studied mechanism design problems where the agent is ambiguity averse in the sense of Gilboa and Schmeidler (1989). The central insight of our analysis is that the principal can exploit the agent’s ambiguity aversion by offering ambiguous mechanisms. In fact, we find that if the type set is “large enough” the designer can extract the entire rent from the agent.

While most of our analysis concentrates on the case of a single agent environment, we show in Appendix B that when the type distribution is atomless our result readily generalize to settings with multiple agents. Finally, the core insight of our article does not depend on the assumption

31. We would like to thank a referee for helping us clarify this point.
Similarly, θ upon reporting type σ satisfies (DIC), it follows that θ1 satisfies (DIC) given that σ1 satisfies (IR) from Ω1. Thus, in passing from Ω1 to Ω2, the transfer of type θ1 is lowered so that θ and θ' have the same expected value. Since Ω satisfies 4, so does Ω1; in particular, $R(\Omega)=R(\Omega_1)$. By construction Ω_1 satisfies the individual rationality constraint of the lowest type with equality. Moreover, it is also downward incentive compatible. To see this observe that the truth-telling payoffs of all types θ_n, $1 < n < N$, are the same under Ω and Ω_1. The highest type’s truth-telling payoff instead is (weakly) larger in Ω_1 than in Ω. Regarding the payoffs from downward deviations, observe that the only downward deviation report which may deliver different payoffs in Ω than Ω_1 is θ_1. But whenever that is the case it is lower in Ω_1 than in Ω. Given that the truth-telling payoffs of types who have downward deviation opportunities are at most higher in Ω_1 than in Ω, it follows that Ω_1 must indeed satisfy 4 given that Ω does.

Ω_1 constitutes the base case for our inductive argument. We next show the inductive step. Suppose we have defined the mechanisms $\Omega_1, \ldots, \Omega_{n-1}$ for some $1 < n \leq N - 1$. Proceeding in similar fashion as before, we define Ω_n as the set of all simple mechanisms of the form (q, t), where $(q, t) \in \Omega_{n-1}$, and the transfer rule t coincides with t except for the transfers of types θ_n and θ_n, which are

$$t'_n = q_\theta \theta_n - \max_{1 \leq m < n, \theta \in \Omega_{n-1}} \{\tilde{q}_n \theta_n - \tilde{t}_n \} \quad \text{and} \quad \tilde{t}'_n = \tilde{t}_n - \frac{p_n}{p_N} [t'_n - t_n].$$

Since Ω_{n-1} satisfies 4, it follows that $t'_n \geq t_n$ and $\tilde{t}'_n \leq \tilde{t}_n$. The above transformation increases the transfer to be paid upon reporting type θ_n in all outcome functions until type θ_n’s truth-telling payoff from each outcome function becomes equal to the payoff from his most attractive downward deviation. As before, Ω_n inherits the properties 4, 4, and 4 from Ω_{n-1}; moreover, by construction $R(\Omega_n) = R(\Omega_{n-1})$.

Finally, define Ω_N as the set of all outcome functions of the form (q, t), where $(q, t) \in \Omega_{N-1}$, and the transfers t coincide with t except for the transfers of the highest type which are set equal to

$$t'_N = t_N + \max_{1 \leq m < N, \theta \in \Omega_{N-1}} \{\tilde{q}_n \theta_N - \tilde{t}_N \} - \max_{1 \leq m < N, \theta \in \Omega_{N-1}} \{\tilde{q}_n \theta_N - \tilde{t}_N \}. $$

Since Ω_{N-1} is downward incentive compatible it follows that the difference

$$\max_{1 \leq m < N, \theta \in \Omega_{N-1}} \{\tilde{q}_n \theta_N - \tilde{t}_N \}$$

is non-negative. This means that in passing from Ω_{N-1} to Ω_N, the transfers of the highest type are increased by the same amount in all outcome functions. Thus, property 4 is preserved and $R(\Omega_N) \geq R(\Omega_{N-1})$. A. APPENDIX

Proof of Proposition 4

Optimality of σ implies

$$\inf_{(q, t) \in \Omega} q(\sigma(t)) \theta - t(\sigma(t)) \geq \inf_{(q, t) \in \Omega} q(s) \theta - t(s) \quad \forall s \in S.$$

Consider the direct ambiguous mechanism Ω' defined in the proposition. By the construction of Ω' we have

$$\inf_{(q, t) \in \Omega} q'(\theta(t)) - t'(\theta(t)) = \inf_{(q, t) \in \Omega} q(\sigma(t)) \theta - t(\sigma(t)).$$

Similarly,

$$\inf_{(q, t) \in \Omega} q'(\theta(t)) - t'(\theta(t)) = \inf_{(q, \tilde{\sigma}) \in \Omega} q'(\tilde{\sigma}(t)) \theta - t'(\tilde{\sigma}(t))
\forall \tilde{\sigma} \in \Theta,$$

and so we can conclude that Ω' is incentive compatible.

That Ω' is consistent with respect to truth-telling follows immediately from the fact that Ω is consistent with respect to σ.

Proof of Lemma 4

Let Ω be a mechanism that satisfies 4, 4, and 4. Let Ω_1 be the set of all simple mechanisms of the form (q, t), where $(q, t) \in \Omega$, $t_n = t_n$ for all $1 < n < N$, and

$$t'_1 = q_1 \theta_1 \quad \text{and} \quad t'_n = t_N - \frac{p_n}{p_N} [t'_n - t_n].$$

Since Ω satisfies 4, 4, and 4, it follows that $t'_1 \geq t_1$ and $t'_n \leq t_N$. Thus, in passing from t to t', the transfer of type θ_1 is increased until its truth-telling payoff is zero, while that of θ_n is lowered so that t and t' have the same expected value. Since Ω satisfies 4, so does Ω_1; in particular, $R(\Omega) = R(\Omega_1)$. By construction Ω_1 satisfies the individual rationality constraint of the lowest type with equality. Moreover, it is also downward incentive compatible. To see this observe that the truth-telling payoffs of all types θ_n, $1 < n < N$, are the same under Ω and Ω_1. The highest type’s truth-telling payoff instead is (weakly) larger in Ω_1 than in Ω. Regarding the payoffs from downward deviations, observe that the only downward deviation report which may deliver different payoffs in Ω than Ω_1 is θ_1. But whenever that is the case it is lower in Ω_1 than in Ω. Given that the truth-telling payoffs of types who have downward deviation opportunities are at most higher in Ω_1 than in Ω, it follows that Ω_1 must indeed satisfy 4 given that Ω does.
In the first step, we have shown that the transfers of the lowest type can be increased so that each outcome function gives payoff zero to the lowest type when he reports truthfully. The inductive step then takes an ambiguous mechanism in which the downward incentive compatibility with respect to types \(\theta_t \) through \(\theta_{t-1} \) are binding and shows that one can increase the transfers of type \(\theta_t \) and decrease the transfers of the type \(\theta_t \) so that also type \(\theta_t \)’s downward incentive compatibility constraint becomes binding and the expected transfer of each of the outcome functions does not change. In the last step, the transfers \(\theta_t \) in all outcome functions are uniformly increased until \(\theta_t \)’s downward incentive compatibility constraint becomes binding. \(\Omega \) is, therefore, an ambiguous mechanism that satisfies all conditions of \(\text{Lim} \). Thus, setting \(\Omega = \Omega_0 \) proves the lemma. \\

Proof of Lemma 2. Let \(\Omega \) be an ambiguous mechanism that satisfies \(\Box \) and \(\text{Lim} \). Denote its closure (in the usual Euclidean sense) by \(\hat{\Omega} \). Clearly, \(\hat{\Omega} \) inherits the properties \(\Box \) and \(\text{Lim} \) from \(\Omega \). Moreover, \(R(\hat{\Omega}) = R(\Omega) \). For each \(1 \leq m < N \), let \(\Omega_m \) be the set of outcome functions in \(\hat{\Omega} \) that minimize the probability of the allocation for the report \(\theta_m \).

\[
\Omega_m = \{(q, t) \in \hat{\Omega} : q_{\theta_m} \leq q_{\theta_n} \text{ for all } (q', t') \in \hat{\Omega}\}.
\]

Let \(m < n \leq N \). Since \(\theta_n > \theta_m \), an outcome function \((q, t) \in \hat{\Omega} \) belongs to \(\Omega_m \) if and only if \(q_{\theta_m} - q_{\theta_n} \geq 0 \). By \(\text{Lim} \), \(q_{\theta_n} - t_m = q_{\theta_m} - t_m' \); hence the above inequality can be written as \(q_{\theta_n} - t_m \leq q_{\theta_n} - t_m' \). It follows that \(\Omega_m \) is also the set of outcome functions that minimizes the payoff of any type \(\theta_n \) when he truthfully reports \(\theta_m \), that is, for all \(m < n \leq N \)

\[
\Omega_m = \{(q, t) \in \hat{\Omega} : q_{\theta_n} - t_m \leq q_{\theta_n} - t_m' \text{ for all } (q', t') \in \hat{\Omega}\}.
\]

Define a mechanism \(\bar{\Omega} \) by letting \((q^m, t^m)\) be an arbitrarily chosen element from \(\Omega_m \), for \(m = 1, \ldots, N - 1 \). Since \(\bar{\Omega} \) is composed of simple mechanisms that were picked from \(\hat{\Omega} \), it immediately follows that \(\bar{\Omega} \) satisfies \(\Box \) and \(R(\bar{\Omega}) = R(\hat{\Omega}) \). Moreover, uniformity of \(\bar{\Omega} \) implies that the truth-telling payoffs in \(\hat{\Omega} \) must be the same as in \(\bar{\Omega} \), except for possibly the truth-telling payoff of the type \(\theta_n \). For type \(\theta_n \) uniformity of \(\bar{\Omega} \) requires merely that there is some outcome function in \(\hat{\Omega} \) for which the truth-telling payoff is the same as the highest payoff the agent obtains in the ambiguous mechanism from misreporting downwards. \(\Omega \) is obtained from \(\bar{\Omega} \) by pruning some outcome functions. The deletion of outcome functions may lead to an increase of the payoff of type \(\theta_n \); i.e. it is possible that \(\min_{q_n \theta_n > t_n} \bar{\Omega} q_n \theta_n - t_n > \max_{q_n \theta_n > t_n} q_n \theta_n - t_n' \). In this case we must also have \(q_n \theta_n - t_n > \max_{q_n \theta_n > t_n} q_n \theta_n - t_n' \) for all \((q', t') \in \bar{\Omega} \), since the downward deviation payoffs in \(\bar{\Omega} \) and \(\hat{\Omega} \) coincide; i.e. \(\hat{\Omega} \) may violate the third condition of \(\text{Lim} \). To deal with this, we construct a new ambiguous mechanism \(\hat{\Omega} \) from \(\bar{\Omega} \) by uniformly increasing transfers \(\bar{\Omega} \), for \(m = 1, \ldots, N - 1 \), by \(\Delta = q_n \theta_n - t_n - \max_{q_n \theta_n > t_n} q_n \theta_n - t_n' \geq 0 \). The fact that all outcome functions in \(\hat{\Omega} \) yield the same expected payoff for the seller, \(\bar{\Omega} \), implies that all outcome functions in \(\hat{\Omega} \)’s yield the expected payoff \(\hat{\Omega}' = \hat{\Omega} + \Delta \geq \hat{\Omega} \), i.e. \(\hat{\Omega}' \) satisfies \(\Box \). Finally, since \(\hat{\Omega} \) and \(\hat{\Omega}' \) differ at most in the transfers of the highest type, the downward deviation payoffs under \(\hat{\Omega} \) and \(\hat{\Omega}' \) coincide; the same holds true also for the truth-telling payoffs of types \(\theta_n \), \(n = 1, \ldots, N - 1 \). \(\hat{\Omega}' \) in turn is composed exactly of those elements of \(\hat{\Omega} \) which define the downward deviation payoffs in \(\hat{\Omega} \). Moreover, as we observed before \(\hat{\Omega} \) inherits from \(\bar{\Omega} \) also the truth-telling payoffs of all but possibly the highest type. The fact that \(\hat{\Omega} \) satisfies \(\text{Lim} \) therefore implies that \(\hat{\Omega} \) must satisfy the first two conditions in the definition of \(\text{Lim} \). Since it has been constructed to satisfy also the third condition of \(\text{Lim} \), we conclude that \(\hat{\Omega} \) satisfies \(\text{Lim} \). Also the property \(\text{Lim} \) is obtained by construction. \\

Proof of Lemma 3. Let \(\Omega = \{(q^1, t^1), \ldots, (q^{N-1}, t^{N-1})\} \) be a mechanism satisfying \(\Box \), \(\text{Lim} \), and \(\text{Min} \).

We first show that \(\Omega \) may be changed so that it satisfies the first part of \(\text{Mon} \) while still satisfying \(\Box \), \(\text{Lim} \), and \(\text{Min} \). Consider the mechanism \(\Omega = \{(q^1, t^1), \ldots, (q^{N-1}, t^{N-1})\} \), where for each \(1 \leq m < N \) the allocation rule \(q^m \) is defined as follows. For every \(1 \leq n \leq N \), \(q^m_n = q^m_n \) if \(n = m \) and \(q^m_n = 0 \) otherwise. By construction, \(\Omega \) satisfies the first part of \(\text{Min} \). Moreover, \(\Omega \) has the same transfer rules as \(\Omega \). Given that the latter satisfies \(\Box \) so must \(\Omega \). For the same reason we also have \(R(\Omega) = R(\hat{\Omega}) \). Next, observe that the downward deviation payoffs in \(\Omega \) and \(\hat{\Omega} \) are the same. Clearly, these payoffs cannot decrease due to the increase in the allocations that occurs when passing from \(\Omega \) to \(\hat{\Omega} \) (transfers do not change). That they cannot increase follows from the construction of \(\hat{\Omega} \) and the fact that \(\hat{\Omega} \) satisfies \(\text{Min} \). Taken together these properties imply that for all \(1 \leq m < n \leq N \) we have

\[
\min_{1 \leq \ell < \infty} \{d_m^\ell \theta_n - t_m^\ell = d_n^\ell \theta_n - t_m^\ell = \min_{1 \leq \ell < \infty} \{d_m^\ell \theta_n - t_m^\ell \}.
\]

Since also the truth-telling payoffs can at most increase, it follows that \(\hat{\Omega} \) inherits from \(\Omega \) the properties \(\Box \), \(\text{Lim} \), and \(\text{Min} \). Applying Lemma 3 to \(\hat{\Omega} \) delivers an ambiguous mechanism \(\hat{\Omega} = \{(q^1, t^1), \ldots, (q^{N-1}, t^{N-1})\} \) that satisfies \(\text{Lim} \). Since this last step does not involve any changes in the allocation rules it follows that \(\hat{\Omega} \) satisfies the first part of \(\text{Mon} \) so that for all \(1 \leq m \leq N - 1 \) we have \(q^m_n \leq q^m_n \) for all \(1 \leq \ell \leq N - 1 \). In the proof of Lemma 2 we have seen that this implies that \(q^m_n \) is the outcome function that defines the payoff from downward deviations towards \(\theta_m \). We can therefore conclude that \(\hat{\Omega} \) satisfies \(\text{Min} \) as well.

We now come to the second part of \(\text{Min} \). Let \(\Omega = \{(q^1, t^1), \ldots, (q^{N-1}, t^{N-1})\} \) be a mechanism satisfying \(\Box \), \(\text{Lim} \), \(\text{Min} \), and the first part of \(\text{Mon} \). Observe first that if for \(1 \leq m < m' < N \) we have \(q^m_n \leq q^{m'}_n \) then for every type \(\theta_n \), \(n > m' \),
Then \(\theta_{qm} \) is a third condition in (Uni) (a binding downward deviation incentive constraint of type \(\theta_{qm} \)) under outcome function (1).

Combining this with \(q_{m}^{m} \theta_{m} - t_{m}^{m} \), we get \(t_{m}^{m} = t_{m}^{m-1} = \mathcal{D}_{\Omega} \) for all \(m' < n \leq N \). Therefore

\[
q_{m}^{m} \theta_{m} - t_{m}^{m} \leq q_{m}^{m} \theta_{m} - t_{m}^{m} \quad \text{for all } m' < n \leq N.
\]

Now assume that \(\Omega \) does not satisfy the second part of (Min), and let \(m' \) be the smallest \(1 \leq m < N \) for which the condition is violated. Thus,

\[
q_{m}^{m} < q_{m}^{m-1} \quad \text{and} \quad q_{m}^{m} \geq q_{m}^{m-1} \quad \forall 1 < m < m'.
\]

By our previous observation for every type \(\theta_{m} \), \(n > m' \) is the most attractive deviation in the set \(\{\theta_{1}, \ldots, \theta_{n-1}\} \) is \(\theta_{n-1} \). Since \(\Omega \) is uniform, this means that the payoff of type \(\theta_{m} \) from reporting truthfully and from reporting \(\theta_{n-1} \) is the same, i.e.,

\[
q_{m}^{m} - q_{m}^{m-1} \theta_{m} - t_{m}^{m} = q_{m}^{m} - q_{m}^{m-1} \theta_{m} - t_{m}^{m}.
\]

But if type \(\theta_{m} \) is indifferent between the reports \(\theta_{m} \) and \(\theta_{m-1} \), then for each \(n > m' \), type \(\theta_{m} \) strictly prefers reporting \(\theta_{m-1} \) over reporting \(\theta_{m} \). Indeed, (13) implies

\[
q_{m}^{m-1} \theta_{m} - t_{m}^{m-1} > q_{m}^{m} \theta_{m} - t_{m}^{m} \quad \text{for all } m' < n \leq N.
\]

Thus, the downward deviation constraint with respect to \(\theta_{m} \) cannot be binding for any type \(\theta_{m} \), \(n > m' \).

Consider now the mechanism \(\tilde{\Omega} = (\{q_{1}^{1}, \ldots, \{Q^{N-1}, R^{N-1}\}) \) that coincides with \(\Omega \) except for the values of \(q_{m}^{m} \), \(t_{m}^{m} \) and \(\mathcal{D}_{\Omega} \). \(q_{m}^{m} \) is increased to \(q_{m}^{m} = q_{m}^{m-1} \), \(t_{m}^{m} \) is increased so that the payoff that type \(\theta_{m} \) gets under the outcome function \((q_{m}^{m}, t_{m}^{m})\) when reporting truthfully is the same one that he gets under the outcome function \((q_{m}^{m}, t_{m}^{m})\), i.e.,

\[
q_{m}^{m} \theta_{m} - t_{m}^{m} = q_{m}^{m} \theta_{m} - t_{m}^{m}.
\]

Finally, \(R^{m} \) is chosen so that the expected values of \(R^{m} \) and \(t^{m} \) coincide, i.e.,

\[
\mathcal{D}_{\tilde{\Omega}} = t^{m} - \frac{p_{m}}{p_{m}} \left[t^{m} - t^{m-1} \right].
\]

Since \(t^{m} \geq t^{m-1} \), it follows that \(\mathcal{D}_{\tilde{\Omega}} \leq \mathcal{D}_{\Omega} \). Notice that in passing from \(\Omega \) to \(\tilde{\Omega} \) only the consequences of reporting \(\theta_{m} \) and \(\theta_{N} \) under outcome function \((q_{m}^{m}, t_{m}^{m})\) are affected. We will argue now that \(\tilde{\Omega} \) satisfies all desired properties except possibly the third condition in (Min) (a binding downward deviation incentive constraint of type \(\theta_{m} \)). Transfers have been modified in a way such that the expected value of \(t^{m} \) remains unchanged. Thus \(\tilde{\Omega} \) satisfies with \(R(\tilde{\Omega}) = R(\Omega) \).

The truth-telling payoff of type \(\theta_{m} \) under \(q_{m}^{m}, t_{m}^{m} \) does not change with respect to \((q_{m}^{m}, t_{m}^{m})\). Thus, also in \(\tilde{\Omega} \) type \(\theta_{m} \) gets the same truth-telling payoff from all outcome functions. From Lemma 2 we know that in combination with \(q_{m}^{m} \leq q_{m}^{m-1} \), \(1 \leq m < N \), this implies that \((q_{m}^{m}, t_{m}^{m})\) defines the payoff from downward deviations towards \(\theta_{m} \) by types \(\theta_{m}, n > m' \). Since no other downward deviation payoffs could be affected when passing from \(\Omega \) to \(\tilde{\Omega} \), we can conclude that the latter must satisfy (Min).

The payoffs from downward deviations towards \(\theta_{m} \) increase, but they cannot exceed those from deviations towards \(\theta_{m-1} \). To see this, notice that since \(\tilde{\Omega} \) satisfies (Min) we have

\[
q_{m}^{m} \theta_{m} - t_{m}^{m} = q_{m}^{m} \theta_{m} - t_{m}^{m} = q_{m}^{m} \theta_{m} - t_{m}^{m} - (q_{m}^{m} - q_{m}^{m-1}) \theta_{m} - t_{m}^{m-1}.
\]

Combining this with \(q_{m}^{m} = q_{m}^{m-1} \) we get \(t_{m}^{m} = t_{m}^{m-1} \). Thus, the payoff that any type can get from report \(\theta_{m} \) under outcome function \((q_{m}^{m}, t_{m}^{m})\) coincides with the payoff that he gets from report \(\theta_{m-1} \) under outcome function \((q_{m}^{m-1}, t_{m}^{m-1})\). Since, the latter defines the payoffs from downward deviations towards \(\theta_{m-1} \) the claim follows. We can therefore conclude that \(\tilde{\Omega} \) satisfies the first two conditions in (Min).

As for the third requirement of (Min) (a binding incentive constraint for downward deviations by the highest type) observe that the truth-telling payoff of type \(\theta_{N} \) may increase since \(\mathcal{D}_{\tilde{\Omega}} \) decreases. If this is not the case, then \(\tilde{\Omega} \) satisfies all conditions of (Min) and so we are done by setting \(\Omega = \tilde{\Omega} \).
If instead the highest type's truth-telling payoff is higher in \(\bar{\Omega} \) than in \(\Omega \), then consider the mechanism \(\Omega' \) which coincides with \(\bar{\Omega} \) everywhere except for the transfers of the highest type. The latter are chosen as follows: for each 1 \(\leq m < N \), set \(t_m' = t_m + \varepsilon \), where \(\varepsilon \) is given by

\[
\varepsilon = \min_{1 \leq h < m} \{ q_m^h \theta_h - t_h \} - \max_{1 \leq m + 1 \leq N} \min_{1 \leq m \leq N} \{ q_m^m \theta_m - t_m \}.
\]

Since in passing from \(\bar{\Omega} \) to \(\Omega' \) the highest type's transfer is increased uniformly across all outcome functions it follows that \(\Omega' \) satisfies (3) with \(R(\Omega') > R(\bar{\Omega}) \). Moreover, the fact that by the switch from \(\bar{\Omega} \) to \(\Omega' \) only the transfers for the highest type are affected, implies that \(\Omega' \) inherits both (Uni) and the first two parts of (Min) from \(\bar{\Omega} \). Finally, in \(\Omega' \) the transfers of the highest are chosen exactly such that the highest type's downward deviation constraint is binding. Consequently, \(\Omega' \) satisfies all parts of (Min) and so the proof is complete.

Proof of Lemma 2. Let \(\Omega \) be a mechanism that satisfies (Uni), (Min), and (Mon). Let \(N > n > m \geq 1 \). Then

\[
\min_{1 \leq m \leq N} \{ q_m \theta_m - t_m \} \leq q^n_m \theta_m - t^m_n
\]

\[
= q^n_m (\theta_m - \theta_n) + q^m_n \theta_n - t^m_n = q^n_m (\theta_m - \theta_n) + q^m_n - \theta_n - t^m_n - 1
\]

\[
= q^n_m (\theta_m - \theta_n) + q^m_n - 1 (\theta_m - \theta_{n-1}) + q^n_{m-1} (\theta_{n-1} - \theta_m - 1) + q^n_{m-1} (\theta_m - \theta_n) - t^m_n
\]

\[
= q^n_m (\theta_m - \theta_n) - t^m_n - \sum_{k=0}^{n-m-1} (q^{k-1}_{m-k} - q^{k-1}_{m-k-1})(\theta_{k+1} - \theta_k)
\]

\[
\leq q^n_m (\theta_m - \theta_n) - t^m_n
\]

\[
= \min_{1 \leq m \leq N} \{ q_m \theta_m - t_m \}.
\]

The first inequality is definitional, the second inequality follows from the fact that \(q^m_n \) is non-decreasing in \(n \) and the last equality is implied by (Uni). The equalities between the two inequalities follow from the fact that for each 1 \(< n \leq N \), the binding downward incentive constraint of type \(\theta_n \), is the one with respect to the adjacent lower type \(\theta_{n-1} \). This has been shown in the proof of Lemma 2 where we have seen that in a uniform ambiguous mechanism (one of) the binding incentive constraint for downward deviations for type \(\theta_n \), 1 \(< n \leq N \), is the one with respect to type \(\theta_{n-1} \), where

\[
m_c \in \arg \max_{1 \leq m < N} \left\{ \min_{1 \leq m < N} \{ q^m_n \} \right\}.
\]

For a mechanism that is also minimal and monotonic it thus follows that \(m_c = n - 1 \).

In the preceding argument we do not allow for \(n = N \). The reason for this is purely notational. A perfectly analogous argument can be applied in the case \(n = N \) by using in the first row instead of \((q^n, r^n) \) the mechanism that minimizes the truth-telling payoff of the highest type.

Proof of Proposition 2. By Lemma 2 we know that every mechanism that is feasible in Problem (2) also satisfies (Uni). It also satisfies (Min) and (Mon) because it satisfies (Uni); see the paragraph after Definition 2. Therefore, every such mechanism is feasible in Problem (3) and thus the value of Problem (2) cannot be smaller than the value of Problem (3).

On the other hand, Lemmas 1 through 3 imply that for every mechanism that is feasible in Problem (2) there exists a mechanism with at least as high an expected revenue for the seller, that is feasible in Problem (2). But then the value of Problem (2) must be at least as large as the value of Problem (3).

Proof of Lemma 3. If \(\Omega \) satisfies (Uni), (Min), and (Mon), then for each 1 \(< n \leq N \) the binding downward incentive constraint of type \(\theta_n \) is the one with respect to \(\theta_{n-1} \) (see the proof of Lemma 2). Thus,

\[
r^m_n = q^n_m \theta_n \hspace{1cm} \text{for all } 1 \leq m < N,
\]

\[
r^m_{n+1} = (q^n_{m+1} - q^n_m) \theta_{n+1} + t^m_n \hspace{1cm} \text{for all } 1 \leq n \leq N - 2 \text{ and } 1 \leq m < N,
\]

\[
r^m_N = (1 - q^N_{n-1}) \theta_n + t^m_{n-1} \hspace{1cm} \text{for all } 1 \leq m < N.
\]

From this it is straightforward to derive 3 and 4 by recursively substituting the expressions \(r^m_n \) into the formula for \(r^m_{n+1} \).
Conversely, suppose we are given a minimal and monotonic mechanism Ω the transfers of which satisfy A_1 and A_3. It is then easily verified that for each $1 \leq n < N$ the truth-telling payoffs of type θ_n are constant across outcome functions. This in turn implies that the payoff type θ_n, $n \in N$, obtains a deviation to θ_{n-1}, $1 \leq m < n$, is determined by the outcome function (η^m, η^n) (since this is the outcome function that minimizes the allocation probability after report θ_m). Using this it is straightforward to show that the payoff of type θ_n from deviating to θ_{n-1}, $m < n$ is increasing in m and is equal to the truth-telling payoff for $m = n - 1$. With other words, type θ_n’s downward adjacent IC constraint is binding.

In order to see this, consider the difference in the payoff of type θ_n from reporting θ_n and θ_{n-1}, $m \leq n$.

$$\min_{1 \leq j < N} \{q^m_{\theta_n} - q^m_{\theta_{n-1}}\} - \min_{1 \leq j < N} \{q^j_{\theta_n} - q^j_{\theta_{n-1}}\} = q^m_{\theta_n} - q^m_{\theta_{n-1}}$$

$$= q^m_{\theta_n} - q^m_{\theta_{n-1}} + \sum_{k=1}^{m-1} q^k_{\theta_n} - q^k_{\theta_{n-1}} - \sum_{k=1}^{m-2} q^k_{\theta_n} - q^k_{\theta_{n-1}}$$

$$= (\theta_n - \theta_{n-1})q^m_{\theta_n} - q^m_{\theta_{n-1}} \geq 0.$$

Given that $q^m_{\theta_n} \geq q^m_{\theta_{n-1}}$, this difference is non-negative. Moreover, it becomes zero for $m = n$. Hence, Ω satisfies all downward incentive constraints and the one with respect to the adjacent lower type is binding. Combining all these observations we can conclude that Ω satisfies A_{43}.}

Starting with Lemma 7 all results from Section 4.3 are stated using Assumption 4. Since the only role of Assumption 4 was to simplify the exposition in the main text in which we state and prove versions of the results that do not rely on this assumption. In order to do so we introduce some further notation. First, we inductively construct the set $M = \{m_1, \ldots, m_N, m_{N+1}\}$, which is a subset of the index set N. The first element, m_1, is set equal to 1. If for m_{n-1} the set $\{n: N > n > m_{n-1}, \rho_n \theta_n > \rho_{m_{n-1}} \theta_{m_{n-1}}\}$ is non-empty, we set $m_n = \min\{n: N > n > m_{n-1}, \rho_n \theta_n > \rho_{m_{n-1}} \theta_{m_{n-1}}\}$. Let m_N be the largest index defined in this way and set $m_{N+1} = N$. Observe that if $\rho_n \theta_n$ is increasing in n, then M coincides with the set N. Also notice that $\rho_n \theta_n$ is monotonic in $j = 1, \ldots, M$ by construction.

Next we generalize the definition of the adjusted virtual valuations. For every $1 \leq j \leq M$ define \tilde{v}_{m_j} as follows:

$$\tilde{v}_{m_j} = \rho_{m_j} \theta_{m_j} - \sum_{x=j}^{M} \frac{\rho_{m_j} \theta_{m_j}}{\rho_{m_j} \theta_{m_j}} \frac{m_{j+1} - 1}{\sum_{i=x}^{N} (1 - P_i)(\theta_{i+1} - \theta_i)^i}.$$

With this adapted definition of adjusted virtual valuations Lemma 7 can be restated as follows:

Lemma 7. If $\tilde{v}_{m_j} \leq 0$ for $1 \leq j \leq M$, then $\tilde{v}_{m_j} \leq 0$ for all $1 \leq k < j$.

Proof of Lemma 7 In order to see this, we rewrite the virtual valuation \tilde{v}_{m_j} in the form

$$\tilde{v}_{m_j} = \rho_{m_j} \theta_{m_j} \left[1 - \frac{M - 1}{\sum_{x=j}^{M} \rho_{m_j} \theta_{m_j}} \frac{m_{j+1} - 1}{\sum_{i=x}^{N} (1 - P_i)(\theta_{i+1} - \theta_i)^i}\right].$$

The sign of \tilde{v}_{m_j} is determined by the expression in the square brackets. It is easy to verify that this term is increasing in j. Thus, if it is negative for a given $1 \leq j \leq M$ then it must be so also for all $1 \leq k < j$.

The main result of Section 4.3 Proposition 3 can be generalized as follows:

Proposition 7. The following holds:

(i) If $\tilde{v}_1 > 0$, then $(\tilde{q}_1, \ldots, \tilde{q}_{N-1}) = (1, \ldots, 1)$ solves Problem P.

(ii) If $\tilde{v}_1 \leq 0$, let $j^* = \max\{j: \tilde{v}_{m_j} \leq 0\}$ and let $\hat{Q} = \{(\tilde{q}_1, \ldots, \tilde{q}_{N-1})\}$ be defined by

$$\tilde{q}_{m_{j^*}} = 0 \quad \text{if } n < m_{j^*} + 1$$

$$= \frac{\rho_{m_{j^*}} \theta_{m_{j^*}}}{\rho_{m_{j^*}} \theta_{m_{j^*}}} \quad \text{if } j^* + 1 \leq j \leq M \text{ and } m_j \leq n < m_{j+1}.$$

\hat{Q} constitutes a solution of P.

Proof Proposition 7 We proceed in several steps. In the first step, we show that the problem of choosing $(\tilde{q}_1, \ldots, \tilde{q}_{N-1})$ can be reduced to a problem where only $(\tilde{q}_{m_1}, \ldots, \tilde{q}_{m_{N-1}})$ are chosen.

Step 1. If $m_j < n < m_{j+1}$, $1 \leq j \leq M$, then at the optimum $\hat{q}_{m_j} = \tilde{q}_{m_j}$.

[Page: 270]
In order to see this observe that since for every \(Q \) with non-decreasing components, we have \(q_{mn}^* \leq q_{mn}^0 \), it follows that
\[
\bar{R}^n(Q) - \bar{R}^0_n(Q) = -p_m\theta_m(1 - q_{mn}) + p_m\theta_m (1 - q_{mn}^0) \geq (1 - q_{mn}^0)(p_m\theta_m - p_m\theta_m^0) \geq 0.
\]
That is, there is no admissible \(Q \) for which \(\bar{R}^0_n(Q) \) is the (strictly) smallest upper bound on the revenues. But \(\bar{R}^n(Q) \) is the only bound that could be increasing in \(q_{mn}^* \). Thus, it is without loss to choose \(q_{mn}^* \) as small as possible, i.e., we can set \(q_{mn}^* = \hat{q}_{mn}^{-1} \). Since this argument applies to all \(m_j < n < m_{j+1} \) we can conclude that choosing \(q_{mn}^* = \hat{q}_{mn}^0 \) for all \(m_j < n < m_{j+1} \) is optimal.

Step 2. At the optimum
\[
\hat{q}_{mn}^{-1} \leq 1 - \frac{p_m\theta_m}{p_m\theta_m} (1 - \hat{q}_{mn}^{-1})
\]
for all \(1 \leq j \leq M - 1 \).

In order to see this, notice that for every \(Q \) such that
\[
\hat{q}_{mn}^{-1} > 1 - \frac{p_m\theta_m}{p_m\theta_m} (1 - \hat{q}_{mn}^{-1})
\]
we have
\[
\bar{R}^{n+1}(Q) - \bar{R}^0_n(Q) > 0.
\]
Moreover, rewriting the inequality yields
\[
\hat{q}_{mn}^{-1} - \hat{q}_{mn}^{-1} > \left(1 - \frac{p_m\theta_m}{p_m\theta_m} (1 - \hat{q}_{mn}^{-1}) \right) (1 - \hat{q}_{mn}^{-1}) \geq 0.
\]
In such a case we can lower \(\hat{q}_{mn}^{-1} \) without violating the constraint \(q_{mn}^{-1} \geq \hat{q}_{mn}^{-1} \), and thus increase all \(\bar{R}^n, n \neq m_{j+1} \). Since \(\bar{R}^{n+1} \) is not the smallest bound this means that the minimum of the bounds would increase. But then \(Q \) cannot be optimal.

Step 3. If \(\tilde{v}_1 \leq 0 \) then at the optimum
\[
\hat{q}_{mn}^{-1} = 1 - \frac{p_m\theta_m}{p_m\theta_m} (1 - \hat{q}_{mn}^{-1}) \quad \text{for all} \ j^* < j \leq M;
\]
if \(\tilde{v}_1 > 0 \) then this condition holds for all \(1 < j \leq M \).

By Step 2 we know that at the optimum
\[
\hat{q}_{mn}^{-1} \leq 1 - \frac{p_m\theta_m}{p_m\theta_m} (1 - \hat{q}_{mn}^{-1}),
\]
for all \(1 < j \leq M \) or equivalently
\[
\bar{R}^n(Q) \leq \bar{R}^{n+1}(Q).
\]
Now suppose that \(\hat{Q} \) is such that this condition holds with strict inequality for \(j = M \), implying \(q_{mn}^0 < 1 \). Then, \(\bar{R}^{n+1}(\hat{Q}) \) is strictly smaller than any other bound. If \(\hat{Q} \) is optimal then it should not be possible to increase \(R^{n+1} \). An increase of \(R^0 \) can be achieved only if \(q_{mn}^0 \) is increased. On the other hand, since for all \(m_j < n < N \) we have \(q_{mn}^0 = \hat{q}_{mn}^0 = \hat{q}_{mn}^{-1} \) can be increased without violating monotonicity only if at the same time we also increase \(q_{mn}^{-1} \) for \(m_j < n < N \). The impact of a uniform increase of \(\{q_{mn}^{-1}, \ldots, q_{N-1}^{N-1}\} \) on \(R^0 \) is
\[
P_{mn} \theta_m = \sum_{i=m}^{N-1} (1 - P_i) (\theta_{i+1} - \theta_i) = \tilde{v}_{mn}.
\]
Thus \(\hat{Q} \) cannot be optimal if \(\tilde{v}_{mn} > 0 \). This proves the claim for \(j = M > j^* \).

For the case that \(j \) lies strictly between \(j^* \) and \(M \) (i.e. \(j^* < j < M \)) assume that we have shown the claim for \(s = j+1, \ldots, M \). If \(\hat{Q} \) is such that
\[
\hat{q}_{mn}^{-1} < 1 - \frac{p_m\theta_m}{p_m\theta_m} (1 - \hat{q}_{mn}^{-1})
\]
then
\[
\bar{R}^{n+1}(\hat{Q}) = \cdots = \bar{R}^{n+1}(\hat{Q}) < \bar{R}^0_n(\hat{Q}) \leq \cdots \leq \bar{R}^{n+1}(\hat{Q}).
\]
The assumption that the claim holds for \(s = j+1, \ldots, M \) implies that
\[
q_{mn}^{-1} = 1 - \frac{p_m\theta_m}{p_m\theta_m} (1 - \hat{q}_{mn}^{-1}) = 1 - \frac{p_m\theta_m}{p_m\theta_m} \left[1 - \frac{p_m\theta_m}{p_m\theta_m} (1 - \hat{q}_{mn}^{-1}) \right],
\]
\[
= \frac{p_m\theta_m}{p_m\theta_m} (1 - \hat{q}_{mn}^{-1}) = \cdots
\]
\[
= 1 - \frac{p_m\theta_m}{p_m\theta_m} (1 - \hat{q}_{mn}^{-1}).
\]
Thus, if \(\bar{\hat{q}}_{t} = q_{m-1}^{n} \),

Thus, if starting from \(\hat{Q} \) we want to increase \(q_{n}^{m} \), then monotonicity combined with the fact that the claim holds for all \(s = j + 1, \ldots, M \) implies that we must increase \(q_{s}^{m} \) with \(m_{s} \leq n < m_{s}, s = j + 1, \ldots, M \), at the rate

If \((q_{m}^{0}, \ldots, q_{N-1}^{0}) \) is increased in this way then \(\hat{R}^{n} \) changes at the rate

Thus, if \(\nu_{j} > 0 \), then \(\hat{Q} \) cannot be optimal.

Step 4. If \(\nu_{j} \leq 0 \) then at the optimum \(q_{n}^{m} = 0 \) for all \(j \leq j^{*} \).

Consider first the case \(j = j^{*} \). From Step 3 we know that for all \(s = j^{*} + 1, \ldots, M \) the condition

holds. Thus, varying \(m_{j}^{n} \) implies that we have to change accordingly also all \(q_{n}^{m} \), \(m_{j}^{n} < n < N \). In the previous step, we have seen that the overall effect that such a change has on \(\hat{R}^{n} \) is measured by \(\nu_{j^{*}} \). Therefore, since \(\nu_{j^{*}} \leq 0 \), \(\hat{R}^{n} \) is maximized by choosing \(m_{j}^{n} \) as small as possible. But that means that we have to set \(q_{n}^{m} = q_{n}^{m_{j}^{n}} \).

Next, consider the choice of \(q_{n}^{m_{j}} \). If \(q_{n}^{m_{j}} = q_{n}^{m_{j}^{n}} \), then

If \(m_{j}^{n} < 1 \) this expression is strictly negative, meaning that \(\hat{R}^{n} \) is not the smallest one of the bounds. Since all other bounds are strictly decreasing in \(q_{n}^{m_{j}^{n}} \), so must be \(\hat{R}^{n} \). Hence, \(m_{j}^{n} \) must be chosen as small as possible. If \(q_{n}^{m_{j}} = m_{j}^{n} = 1 \), then \(\hat{R}^{n} \) can be increased by a decrease of \(m_{j}^{n} \) that is accompanied with a reduction of all \(q_{n}^{m_{j}^{n}} \), \(m_{j}^{n} < n < N \), in accordance with (18). In order to see this notice that by (19) we know that in the initial situation we have \(\hat{R}^{j^{*}} = \hat{R}^{j^{*}+1} \). After the proposed reduction of all \(q_{n}^{m_{j}^{n}} \), \(m_{j}^{n} < n < N \), we have \(\hat{R}^{n} < \hat{R}^{j^{*}+1} \). By our previous arguments we know that a reduction of \(q_{n}^{m_{j}^{n}} \) in accordance with (18) leads to an increase of \(\hat{R}^{j^{*}+1} \) and \(\min \hat{R}^{j^{*+1}} \).

If in addition also \(m_{j}^{n_{j}} \) is reduced then certainly \(\hat{R}^{n} \), \(j \neq j^{*} = 1 \), increase further. Moreover, since after the change \(\hat{R}^{n} < \hat{R}^{n} \) it must be the case that also \(\hat{R}^{n} \) increases. Combining these arguments we conclude that \(m_{j}^{n} \) must be chosen as small as possible, i.e., \(m_{j}^{n} \) should always be chosen equal to one of the types above \(\theta_{j} \).

Iterating on the same argument we can show that for all \(m_{j} \leq m_{j}, q_{n}^{m_{j}} \) must be chosen as small as possible. Since for \(m_{1} \) this means \(q_{n}^{m_{1}} = 0 \) we thus get \(q_{n}^{m_{1}} = 0 \) for all \(m_{1} \leq m_{j} \).

Step 5. If \(\nu_{j} > 0 \), then at the optimum \(q_{n}^{m_{j}} = 1 \) for all \(1 \leq j \leq M \).

In Step 3 we have seen that if \(\nu_{j} > 0 \) for all \(j^{*} < j \leq M \) then each \(m_{j}^{n} \) has to be chosen as large as the constraint

allows. Since there is no such constraint for \(j = j^{*} \) it follows that \(q_{n}^{m_{j}} \) must be optimally set equal to 1. Monotonicity requires that also \(q_{n}^{m_{j}} < n < N \), \(1 \), must be equal to 1.

Proof of Proposition 2. In the text we explained what happens when an offer for \(\theta_{j} \) is the optimal simple mechanism. Here we assume it is not. An optimal simple mechanism \((\hat{q}_{j}, \hat{t}) \) is then an offer at a price equal to one of the types above \(\theta_{j} \), that is, there is a \(\hat{n} > 1 \) such that \(\hat{q}_{n} = 0 \) for all \(n \leq \hat{n} \) and \(\hat{q}_{n} = 1 \) for all \(n \geq \hat{n} \). We will show that for each such mechanism one can find an ambiguous mechanism that generates a strictly larger expected revenue to the seller.

Fix an optimal simple mechanism \((\hat{q}_{j}, \hat{t}) \) as described above, and define the ambiguous mechanism \(\Omega(\hat{n}, q) = \{(\hat{q}_{1}, \hat{t}), \ldots, (\hat{q}_{j-1}, \hat{t}), (q^{j}, q^{n})\} \) as follows

where \(q \in [0, 1] \). Notice that there is nothing in the definition of \(\Omega(\hat{n}, q) \) that guarantees consistency. We will deal with that condition in a second step.
Next we show now that there exists a value \(\hat{q} \) such that under truth-telling each of the outcome functions of \(\Omega(n, \hat{q}) \) generates an expected revenue that strictly exceeds the expected revenue achieved by an optimal simple mechanism. To see this, notice that under truth-telling the \(m \)-th outcome function of \(\Omega(n, q) \) yields an expected revenue of

\[
R^m(\Omega(n, q)) = \begin{cases}
\sum_{m \leq \hat{q}, n \neq m} p_m \theta_m + \sum_{n \geq \hat{q}} p_n (1 - q) \theta_n + q \theta_{\hat{q}} & \text{if } m \leq \hat{n}, \\
\sum_{m \leq \hat{q}, n \neq m} p_m \theta_m + p_n \theta_n + \sum_{n \geq \hat{q}} p_n (1 - q) \theta_{\hat{q}} + q \theta_{\hat{q}} & \text{else}.
\end{cases}
\]

(21)

The revenue of the TOL offer for \(\theta_n \) (an optimal simple mechanism) is

\[
\hat{R} = \theta_n \sum_{n \geq \hat{n}} p_n.
\]

(22)

Comparing the expressions (21) and (22) reveals that for all \(m < \hat{n} \) the former is strictly larger than the latter for all \(q \in (0, 1) \). As for the case \(m \geq \hat{n} \) observe that

\[
R^m(\Omega(n, q)) - \hat{R} = \sum_{m < \hat{n}} p_m \theta_m - p_n (1 - q) \theta_n + \sum_{n \geq \hat{n}} p_n (1 - q) (\theta_{\hat{q}} - \theta_n).
\]

Since \(\sum_{m < \hat{n}} p_m \theta_m > 0 \) this difference must be strictly positive for \(q \) close to 1. Thus, when \(q \) is close enough to 1

\[
R^m(\Omega(n, q)) > \hat{R}
\]

for all \(m \). Fix a \(q < 1 \) that satisfies this inequality and label it \(\hat{q} \). We next modify \(\Omega(n, \hat{q}) \) such that it satisfies consistency while still achieving an expected revenue equal to

\[
\min_{n'} R^{n'}(\Omega(n, \hat{q})) > \hat{R}.
\]

To do so define

\[
\Delta_m = \min_{n'} R^{n'}(\Omega(n, \hat{q})) - \min_{n''} R^{n''}(\Omega(n, \hat{q}))
\]

and manipulate the transfers of the highest type in all outcome functions of \(\Omega(n, \hat{q}) \) by subtracting \(\Delta_m \), i.e. set

\[
\tilde{R}_n = R_n - \Delta_m.
\]

Denote the ambiguous mechanism obtained after the change in the highest type's transfers by \(\Omega(n, \hat{q}) \).

By construction all outcome functions of \(\Omega(n, \hat{q}) \) yield the same expected revenue and this expected revenue is strictly larger than the revenue of the optimal simple mechanism. It is straightforward to verify that \(\Omega(n, \hat{q}) \) is constructed in such a way that it satisfies the properties (\text{Min}), (\text{Min}), and (\text{Mon}). Lemma 4 therefore implies that \(\Omega(n, \hat{q}) \) is incentive compatible. Thus, \(\Omega(n, \hat{q}) \) is a Problem 3 feasible mechanism that produces a larger expected revenue than the best simple mechanism.

In order to complete the proof we need to argue that \(Q = (1, \ldots, 1) \) not being a solution of Problem 3 is equivalent to \(\hat{t}_1 < 0 \). Proposition 2 implies that when \(\hat{t}_1 > 0 \), \(Q = (1, \ldots, 1) \) is a solution to Problem 3. On the other hand, step 4 of the proof of Proposition 2 states that if \(\hat{t}_1 \leq 0 \), then at the optimum \(\hat{q}'_{\hat{m}} = 0 \) for all \(\hat{m} \leq \hat{q} \). It is easy to see from the proof that when \(\hat{t}_1 < 0 \), \(Q = (1, \ldots, 1) \) cannot be a solution to Problem 3. However, when \(\hat{t}_1 = 0 \), there can be other solutions beside the one in the statement of Proposition 2. In that case \(\hat{R}(Q) \), as used in the proof, is constant when one varies \(\hat{q} \). It follows from the fact that in passing from \(\Omega(n, \hat{q}) \) to \(\Omega(n, \hat{q}) \) the transfers of the highest type are lowered. Therefore, the upper bound is attained, and \(Q = (1, \ldots, 1) \) is also a solution. To conclude, \(Q = (1, \ldots, 1) \) is not a solution to Problem 3 and only if \(\hat{t}_1 < 0 \).

Proof of Proposition 3. Consider the relaxed versions of Problem 3 from which Problem 3 has been derived. Suppose that \(\Omega \) is a feasible mechanism of that problem and that \((\hat{q}, \hat{t}) \) is one of the simple mechanisms in \(\Omega \) that generates the smallest expected revenue, i.e. \((\hat{q}, \hat{t}) \in \arg\min_{(q, t) \in \Omega} \mathbb{E}_p[\pi(t, q)] \).

Let \(\Omega' \) be the set of all outcome functions of the form \((q, t, \hat{t}) \), where \((q, t) \in \Omega \) and the transfer rule \(\hat{t}' \) coincides with \(t \) except for the transfers of the highest type, which are equal to

\[
\hat{t}'_{\hat{m}} = t_{\hat{m}} - \left[\mathbb{E}_p[\pi(t, q)] - \mathbb{E}_p[\hat{r}(q)] \right]/p_{\hat{m}}.
\]

\(\Omega' \) inherits from \(\Omega \) the properties (\text{Min}), (\text{Min}), and (\text{Mon}). This follows from the fact that in passing from \(\Omega \) to \(\Omega' \) the highest type's transfers are lowered. Thus, both individual rationality and downward incentive compatibility can at most be relaxed. Moreover, by construction we have that

\[
\mathbb{E}_p[\hat{r}(q)] = \mathbb{E}_p[r(q)] \quad \text{for all } (q, t) \in \Omega'.
\]

Thus, \(\Omega' \) satisfies (\text{Mon}) and generates the same value as \(\Omega \). But that means that the value of the relaxed version of Problem 3 does not change if the constraint (\text{Min}) is replaced by (\text{Min}). Doing so yields the relaxed version of Problem 3. We already know that the latter has the same value as Problem 3 itself.
This bounds the agent’s expected payoff above by 0. By reporting truthfully the agent either obtains the object and pays in the higher announced type at a price that is equal to the announced type. Thus, under truth-telling each simple mechanism \(\theta \) resulting payoff is zero. Thus, truth-telling always guarantees a non-negative payoff.

Finally, we have to argue that under \(\Omega \) truth-telling is an optimal strategy for the two agents, irrespective of what they believe about the other agent’s type or play. In order to see this, notice that for every profile of announced types, \(\tilde{\theta} \), agent \(i \) knows that there are simple mechanisms in \(\Omega \) (all those indexed by a type profile, \(\theta \), such that \(\tilde{\theta}^i = \theta^i \)) that specify that he will not receive the object and that he will not have to pay anything. This means that for every \(\tilde{\theta} \) his payoff is at most zero. On the other hand, by revealing his type truthfully, agent \(i \) can never get a strictly negative payoff since every outcome function specifies for every pair of reported types one of two possible outcomes for agent \(i \): either he gets the object with probability one and pays the reported valuation or he does not get the object and pays zero; in either case the resulting payoff is zero.

B. APPENDIX

In the main text, we have restricted our attention to optimal mechanism design problems in single agent environments. In this section, we show how the full surplus extraction result of Corollary 2 can be extended to a setting with multiple agents. More specifically, in what follows we consider a setting with two agents whose types are drawn from an atomless distribution. The assumption of two agents is made for notational convenience only. All the arguments easily extend to the case with more than two agents.

Assume that the two agents have preferences as in the previous sections. We denote the type set of agent, \(i = 1, 2 \), by \(\Theta^i \). For a generic element of this set we write \(\theta^i \); generic type profiles in \(\Theta = \times_i \Theta^i \), are indicated by \(\theta \). We assume that the agents’ types are (independently) drawn from the atomless distribution \(p \) with support \([0,1] \). We do not need to assume that the designer knows the exact type distribution. For the following result, we only need to impose that he knows the support of the distribution. Regarding the two agents’ beliefs about each others type distribution we make no assumptions at all.

Proposition 8. (Full surplus extraction with multiple agents). Consider a two agent setting as described in the preceding paragraph. Moreover, let the ambiguous mechanism \(\Omega = \{(q_i, \theta^i) : \theta \in \Theta \} \), be defined by

\[
q^i(\tilde{\theta}) = \begin{cases}
(0,0) & \text{if } \tilde{\theta} = \theta \\
(1,0) & \text{if } \tilde{\theta}^1 \neq \theta^1 \text{ and } \tilde{\theta}^2 = \theta^2 \\
(0,1) & \text{else}
\end{cases}
\]

\[
\rho^i(\tilde{\theta}) = \begin{cases}
q^1(\tilde{\theta}^1, \theta^2) & \text{or } \tilde{\theta}^1 = \theta^1, \tilde{\theta}^2 = \theta^2, \text{ and } \tilde{\theta}^1 \geq \tilde{\theta}^2
\end{cases}
\]

Under \(\Omega \) truth-telling is an optimal strategy for the two agents irrespective of their beliefs regarding the other agent’s type or play. Moreover, \(\Omega \) is individually rational and consistent (with respect to truth-telling). The expected revenue generated by each element of \(\Omega \) is \(T = E[\max(\theta^1, \theta^2)] \). That is, \(\Omega \) achieves full surplus extraction.

The ambiguous mechanisms presented in the above result can be constructed as follows. For every profile of types \(\tilde{\theta} = (\theta^1, \theta^2) \) we add to the ambiguous mechanism a simple mechanism \((q^i, \rho^i)\) with the following property. If both agents’ reports coincide with the corresponding component of the label of the simple mechanism, i.e. if for every \(i \) we have \(\theta^i = \tilde{\theta}^i \), then the seller keeps the object and there are no transfers. If, neither agent’s report coincides with label, i.e. if for every \(i \), \(\theta^i \neq \tilde{\theta}^i \), then the agent with the higher report receives the object at the price he reported. Finally, if only one agent’s report coincides with the label of the simple mechanism, then the agent whose report does not coincide receives the object at the price equal to the value he announced. Since the ambiguous mechanism contains all such simple mechanisms, there is a simple mechanism for each report of each agent such that the agent does not receive the object if he reports that type. This bounds the agent’s expected payoff above by 0. By reporting truthfully the agent either obtains the object and pays zero.

32. The following full-rent-extraction result for multiple agents implies that ambiguous mechanisms outperform simple mechanisms also in situations with multiple agents. For a characterization of expected revenue maximizing simple mechanisms in general environments see Kos and Messner (2013) and Kos and Messner (2013b).
the reported, and therefore true, value or does not receive it and pays zero. In either case the agent’s payoff is zero, which is also the before established upper bound. But then the agent has no incentives to deviate from truthful reporting. This establishes that truthful reporting is an equilibrium of the proposed mechanism. On the other hand, assuming that the agents do report truthfully and that each profile of types occurs with probability zero, each simple mechanism yields for the seller the expected surplus $E[\max\{b^1, b^2\}]$. With other words, the seller extracts the full surplus.

Acknowledgments. We thank the editor and three anonymous referees for their insightful and constructive comments that have helped us to greatly improve the paper. For helpful discussions and comments we also thank Simone Cerreia-Vioglio, Eddie Dekel, George Mailath, Massimo Marinacci, Stephen Morris, Frank Riedel, Larry Samuelson, Martin Schneider, Ilya Segal, seminar participants at Northwestern University, Universitat Autonoma de Barcelona, Universitat Pompeu Fabra, Yale University, participants of UECE Lisbon 2011, Workshop on Ambiguity Bonn 2011, and Arne Ryde Workshop on Dynamic Pricing: A Mechanism Design Perspective 2011. The authors would like to thank the MIUR (Prin grant 2010NE9L9Z-004) for the financial support.

REFERENCES

