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This article explores the sale of an object to an ambiguity averse buyer. We show that the seller
can increase his profit by using an ambiguous mechanism. That is, the seller can benefit from hiding
certain features of the mechanism that he has committed to from the agent. We then characterize the profit
maximizing mechanisms for the seller and characterize the conditions under which the seller can gain by
employing an ambiguous mechanism. Finally, we propose a class of ambiguous mechanisms that are easy
to implement and perform better than the best non-ambiguous mechanism.

Key words: Optimal mechanism design,Ambiguity aversion, Incentive compatibility, Individual rationality

JEL Codes: C72, D44, D82

1. INTRODUCTION

Starting with the seminal work of Ellsberg (1961), experimental economists have argued that the
standard economic model for decision making under uncertainty, namely the Expected Utility
Model (henceforth EU model), performs rather poorly in describing individuals’ behaviour in
situations where subjects have very little information regarding the decision problem they are
facing. In particular, it has been shown that the overwhelming majority of individuals tends to
shy away from alternatives for which they lack the necessary information to form a probabilistic
belief about their consequences. It is well known that this aversion against uncertainty/ambiguity
is incompatible with the EU model.1

1. The sense in which ambiguity aversion is incompatible with the EU model is best explained with Ellsberg’s
famous two urn example. There are two urns, each of which contains one hundred balls. Half of the balls in Urn A are
red, the other half is blue. Also Urn B is composed of balls that are either red or blue, but the decision maker has no
information about the number of balls of each color. Now consider the following two bets. Bet RA pays one dollar if in
a random draw from Urn A a red ball is extracted; bet RB pays one dollar if a random draw from Urn B yields a red ball.
When faced with the choice between these two bets the overwhelming majority of subjects picks bet RA. The same they
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This inconsistency between observed decisions and the EU model has stimulated the
development of decision theoretic models that are able to accommodate ambiguity aversion.
For two recent surveys of the literature on ambiguity aversion and its axiomatic foundations, see
Gilboa (2009) and Gilboa and Marinacci (2013). While ambiguity aversion models have been
successfully applied in many areas of economics and finance,2 they have received only limited
attention in mechanism design (see the discussion of the literature below).

We consider a screening model in which a seller is selling an object to a single ambiguity
averse buyer. For most of the paper we assume that the agent’s preferences can be described by
the maxmin expected utility model (MMEU) proposed by Gilboa and Schmeidler (1989). The
agent privately observes his willingness to pay for the good, while the principal only knows the
distribution from which it has been drawn. We introduce the concept of an ambiguous mechanism,
i.e. a mechanism where the principal announces a set of possible standard mechanisms (henceforth
simple mechanisms), and commits to one of them without revealing to the buyer which one he
has chosen.

We then proceed to show that a seller who faces an ambiguity averse agent can strictly
benefit from using such ambiguous mechanisms. This result has wide-ranging consequences. It
implies that in any mechanism design environment with ambiguity averse agents—be it auctions,
bilateral trade, optimal taxation, unemployment insurance, or some other setting—the analysis is
not without loss of generality unless ambiguous mechanisms are considered.

Through the use of an ambiguous mechanism, the principal exposes the agent to ambiguity
regarding the consequences of his report. Since the agent has MMEU preferences, he associates
with each possible report the worst possible outcome that he can obtain under all the simple
mechanisms that compose the ambiguous mechanism. Different types evaluate outcomes
differently, and hence they may associate different worst case scenarios with a given report. It is
precisely this feature that makes the use of ambiguous mechanisms attractive for the principal:
the principal can design the ambiguous mechanism in such a way that each outcome function
that it contains deters the agent from a subset of his deviation possibilities. In this way, each of
the simple mechanisms that compose the ambiguous mechanism can be distorted less than the
outcome function of a simple mechanism, which has to prevent the agent from all his possible
deviations.

The arguments in the preceding paragraph presume that the agent believes that the principal
might have committed to any of the elements of the ambiguous mechanism. Put differently, it
takes for granted that the agent’s (set-valued) belief over the set of outcome functions contains
at least all degenerate distributions over this set. The assumption that the agent holds such a
“comprehensive” belief is reasonable if it is compatible with the principal being indifferent
between all the elements of the ambiguous mechanism, provided that the agent acts optimally
with respect to such a belief. We therefore require that all elements of an ambiguous mechanism
generate the same expected revenue under the assumption that the agent chooses his strategy
based on a comprehensive belief. We refer to ambiguous mechanisms that satisfy this condition
as consistent. A formal definition of the consistency condition is presented in Section 3. While
from a technical point of view we treat consistency as a constraint that limits the feasible actions
available to the designer, it should be interpreted as an equilibrium condition in the interaction
between the principal and the agent.

do also when the pair of bets is formulated for the color blue. Within the EU framework it is impossible to rationalize
both these decisions: for each possible belief about the composition of Urn B the decision maker should choose the bet
on a blue ball from Urn B if and only if between the two bets on red he prefers the one referring to Urn A.

2. See for instance Epstein and Schneider (2008) and Castro and Yannelis (2012) for examples of applications of
ambiguity aversion in finance and general equilibrium.
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In the remainder of the article, we characterize the profit maximizing static mechanisms in the
above described environment. First, we formulate and prove a version of the Revelation Principle
that is appropriate for our context. Doing so allows us to restrict attention to direct ambiguous
mechanisms. We characterize (one of) the smallest optimal direct ambiguous mechanism(s) for
the case where the set of possible types of the agent is finite.3 We show that this mechanism
is composed of at most N −1 elements, where N is the number of types. The n-th outcome
function of this ambiguous mechanism assigns the good with probability one to all types m �=
n,N at a price that coincides with the reported type. Thus, every outcome function extracts the
entire surplus from N −2 types. The highest type also obtains the good with probability one.
However, since his transfers are used to guarantee consistency, he typically does not have to
pay a price equal to his willingness to pay. The remaining components of the outcome functions
(allocations and payments of type n≤N −1 under outcome function n) vary with the details of
the type distribution. More specifically, we show that these components depend on the types’
so-called adjusted virtual valuations. Independently of the details of the type distribution, these
components satisfy a monotonicity condition: the probability with which type n obtains the good
under outcome function n is smaller than or equal to the probability with which outcome function
m>n assigns the good to type m. The share of surplus that the designer can extract from the
agent increases as the type set becomes larger and the probability of each type converges to zero.
In the limiting case of a non-atomic type distribution over an interval, the optimal ambiguous
mechanism extracts the full surplus from the agent.

The effectiveness of optimal ambiguous mechanisms in extracting surplus from the buyer
comes at the cost of complexity of implementation. This complexity limits the applicability of
such mechanisms to real-life scenarios. However, the broader idea that the seller could benefit by
concealing some aspects of the mechanism from the buyers (thus making it ambiguous) can be
observed in reality. Perhaps the most prominent examples are auctions with secret reserve prices.4

In another instance, Bergemann and Horner (2010) discuss the case of Google’s sponsored search
auctions where the algorithm to pick the winner is unknown.5

In addition, we show that ambiguous mechanisms do not need to be prohibitively complex
to outperform non-ambiguous mechanisms. In Section 5, we propose a class of basic ambiguous
mechanisms which despite being easy to implement dominate all non-ambiguous mechanisms
in terms of the expected revenue they generate. We dub these mechanisms naive ambiguous
mechanisms. Essentially, a naive ambiguous mechanism can be thought of as a choice between
a take-it-or-leave-it (TOL) offer and an ambiguous bet (an Elsberg urn) with an unknown
composition of balls of two colours. Of course the agent can also opt out. If the agent chooses the
ambiguous bet he receives the object and pays half of the TOL price (receives a 50% discount)
if the ball drawn out of the urn is of the colour he has chosen; otherwise he gets and pays
nothing. A max-min agent with a valuation above the TOL price optimally chooses the TOL
price, which guarantees him a strictly positive payoff. An agent with a valuation between the
discounted price and the full price selects the ambiguous bet; the remaining types opt out. The
naive mechanism that is constructed on the basis of an optimal TOL price outperforms this optimal

3. The term “smallest” refers to the number of elements of the ambiguous mechanism.
4. Ashenfelter (1989) documents the existence of secret reserve prices at the famous auction houses as

Hendricks et al. (1989) in auctions for off-shore oil, Elyakime et al. (1994) in timber auctions in France, and
Bajari and Hortacsu (2003) on eBay, to name a few.

5. Auctions with ex ante uncertain auction rules are also applied in the used car market. In these auctions first
buyers submit their bids. Upon observing the bids the auctioneer either declares a winner or he calls for a second round
of bids and so on. The rule according to which the decision about whether or not to continue is taken, is not known to
buyers (and supposedly not easily inferable from previous observations unless the bidder is extremely experienced). We
are thankful to Larry Samuelson for pointing us to this example.



[10:08 2/12/2016 rdw051.tex] RESTUD: The Review of Economic Studies Page: 240 237–276

240 REVIEW OF ECONOMIC STUDIES

TOL price mechanism because a part of the types below the TOL price are induced to buy and
thus contribute to the seller’s revenue.

In the final section of the article, we discuss how the result on full surplus extraction under
ambiguity aversion relates to the findings of Matthews (1983), who shows that with risk aversion
growing towards infinity the seller’s rents grow towards full surplus extraction.6 We then proceed
to show that the principal may want to elicit payoff-irrelevant private information from the agent.
Since such information is easy to generate, the principal has an incentive to induce the agent to
inflate his type set by adding payoff irrelevant elements.

We provide three robustness checks. First, we show that the seller benefits from ambiguous
mechanisms even if he is ambiguity averse himself. Consistency ensures that the seller obtains
the same expected payoff from all outcome functions. Therefore, even if a third person were
to choose the outcome function the seller would not be exposed to ambiguity. What is more,
we show that even if the seller’s preferences can be described by MMEU and one does not
require consistency, the mechanisms that we derive are optimal. Second, we argue that the central
insight of the paper—that the principal can exploit the agent’s ambiguity aversion by offering an
ambiguous mechanism—does not depend on the specific model of ambiguity aversion we adopt
(MMEU preferences) but remains valid under alternative models of uncertainty aversion.7 More
specifically, we provide an example that shows this for the case of smooth ambiguity aversion.
The third dimension in which the core insight of the paper generalizes is the number of agents.
While we do not provide a detailed characterization of the optimal ambiguous mechanism for
the case where the agents’ type sets are finite, we describe in Appendix B the mechanism that
extracts the full surplus when the agents’ types are drawn from an atom-free distribution defined
on some interval.

Related literature: A number of recent papers consider mechanism design problems with
ambiguity averse players. Examples include Bose et al. (2006), Turocy (2008), Bose and Daripa
(2009), Bodoh-Creed (2012), Bose and Renou (2014), Bergemann and Schlag (2011), Auster
(2015), Wolitzky et al. (2014), and Kos and Messner (2015).8 The central difference between
these papers and ours is that they start from the assumption that the agents (and/or the principal)
are uncertain about the other agents’ type distribution. That is, the uncertainty in these models
refers to an exogenously given variable. The endogenous objects (i.e. the mechanisms) are not
allowed to be ambiguous.9 Instead, these papers characterize the optimal standard (i.e. non-
ambiguous) mechanism, where attention is restricted either to direct mechanisms or to simple
forms of indirect mechanisms (e.g. standard auction formats).10

To the best of our knowledge, this is the first paper showing that it can be in the designer’s
interest to introduce uncertainty over outcome functions when agents are ambiguity averse. In
a contemporaneous and independent paper, Bose and Renou (2014) also recognize that in such

6. The implications of risk aversion for the design of an optimal mechanism are also studied by Maskin and Riley
(1984).

7. The details of our characterization of an optimal ambiguous mechanism do depend on the assumption of MMEU
preferences.

8. Several models of beliefs and behaviour in games that relax the assumption of Bayesian expected-utility
maximizing players have been proposed. See e.g.Azrieli and Teper (2011) and the references therein. Moreover, ambiguity
aversion has also been applied in environments with moral hazard; see Lang and Wambach (2013).

9. Bose and Renou (2014) are an exception to this observation; their work is discussed in more detail in the
following paragraph.

10. Similar comments apply both to the literature on moral hazard with ambiguity aversion and the literature on
models with Knightian uncertainty. For the literature on moral hazard and ambiguity aversion see for instance Kellner
(2015) and Szydlowski (2012); on Knightian uncertainty in mechanism design see Lopomo et al. (2009) and Garrett
(2014) and the references therein.
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TABLE 1
The optimal non-ambiguous direct mechanism

θ̂ 1 2 4

(q∗,t∗) (0,0) (0,0) (1,4)

contexts the principal may want to introduce some element of uncertainty into the mechanism
that he uses. The two papers are complementary, as they study the impact of ambiguity aversion
through quite distinct channels. Unlike in this article, in their work ambiguity is not introduced via
the outcome functions. Instead, they explore which social choice rules the designer can implement
if he engages the agents in a dynamic communication game that he mediates by transforming
messages in an ambiguous way. By injecting uncertainty in the exchange of messages between
the agents, the principal can manipulate the agents’ beliefs about each other’s type and hence
their behaviour. Bose and Renou (2014) remark that the precise extent to which the agents’
beliefs can be manipulated depends on the assumed form of (full Bayesian) belief updating.
In contrast, restricting attention to strategic form mechanisms makes the question of what is
the most appropriate way to model updating by ambiguity averse individuals— an issue still
controversially discussed in the literature—altogether irrelevant in our context. Finally, the
ambiguous communication devices in Bose and Renou (2014) serve to manipulate the agents’
beliefs over the other agents’ types and hence they are ineffective in single agent environments.
Instead, as we show in this article, (outcome) ambiguous mechanisms have leverage also in the
case of a single agent.

The article is also related to the literature on robust mechanism design that originated
with the seminal papers by Bergemann and Morris (2005) and Chung and Ely (2007). This
literature departs from the standard Bayesian type space framework that has dominated the earlier
mechanism design literature and studies what kind of social choice functions are implementable
irrespective of the assumed type space. Requiring such a form of robustness with respect to the
details of the type space is similar in spirit to the idea of a designer who is uncertain about
the “correct” type space. Apart from the fact that the “uncertainty aversion” in the case of this
literature is on the side of the designer, the crucial conceptual difference to our work lies in the
fact that the family of the relevant type spaces is not an endogenous object (like the ambiguous
mechanisms in our work) but is exogenously given.

Finally, the article also relates to the literature on ambiguity aversion in game theory (see for
instance the papers Azrieli and Teper, 2011 and Bade, 2011).

2. MOTIVATING EXAMPLE

Consider a principal selling an object to an ambiguity averse and risk neutral buyer whose
preferences can be represented by maxmin expected utility. The buyer’s valuation for the object,
θ , is 1 with probability 1/4, 2 with probability 1/4 and 4 with probability 1/2. The seller’s
objective is to maximize expected revenue.

The optimal standard mechanism in this setting is a TOL offer at the price of 4. The
corresponding direct mechanism asks the agent to report his type and awards him the object
at a price of 4 if the agent announces θ =4. For any other report the seller keeps the object and
no transfer takes place. The expected revenue generated by this mechanism is 2. It will prove
convenient to represent the described direct mechanism in Table 1, where (q∗,t∗) denotes the
outcome function (probability with which the good is transferred and transfer to be paid) and θ̂

denotes the reported type.
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TABLE 2
The ambiguous (direct) mechanism �

θ̂ 1 2 4

(q1,t1) (0,0) (1,1) (1,4)
(q2,t2) (1,1) (0,0) (1,4)

Suppose that instead of offering the above standard mechanism (henceforth, we will refer
to such mechanisms also as simple mechanisms) the seller proceeds as follows. Before he asks
the buyer to communicate his valuation of the good, he informs him that he has committed to a
simple (direct) mechanism. But instead of letting the buyer know which simple mechanism he
has committed to he only tells him that this simple mechanism is an element of some set of simple
mechanisms that he reveals to the buyer. By not providing the buyer with any further information
about the simple mechanism to which he has committed, the seller exposes the buyer to ambiguity
about the consequences of his messages. We therefore refer to the set of simple mechanisms that
is communicated to the buyer as an ambiguous mechanism.

For the sake of concreteness, suppose the seller offers an ambiguous mechanism that contains
two (direct) simple mechanisms, denoted by (q1,t1) and (q2,t2), respectively.11 Assume that the
first outcome function, (q1,t1), specifies that upon a message θ̂ =1 the object remains with the
seller and there are no transfers. If the agent reports θ̂ =2, he obtains the object at a price of
1. Finally, in case the agent’s message is θ̂ =4, he obtains the object and pays 4. The second
outcome function, (q2,t2), awards the object at a price of 1 to the agent if he reports θ̂ =1, does
not award the object to the agent, and no transfer takes place, if the agent reports θ̂ =2. If the
agent reports θ̂ =4, he receives the object with certainty and pays 4. We denote the ambiguous
mechanism composed of these two simple mechanisms by �. The details of � are summarized
in the Table 2.

We now turn to the question of how the buyer should behave when he is offered the mechanism
�. The buyer’s preferences are of the max-min expected utility type, hence whenever he is faced
with a decision problem under ambiguity, he associates with each action that he may take the
payoff that this action yields in the (action specific) worst case scenario. In the context of our
example, the buyer is exposed to ambiguity through the mechanism �: the consequences of
a message that he can send to the seller depend on the outcome function to which the seller
has committed, and the buyer has no explicit or even implicit information regarding the seller’s
choice.

If the buyer does consider it possible that the principal might have committed to either of
the two outcome functions in �, then the payoff that type θ associates with a message θ̂ is
min{q1(θ̂ )θ −t1(θ̂ ),q2(θ̂ )θ −t2(θ̂ )}.12 We will now argue that truthful reporting is an optimal
strategy for the buyer. To see this, suppose first that the buyer’s type is θ =4. If he reports this
truthfully he obtains the object with certainty and pays a price of 4 (both simple mechanisms
specify this outcome when θ̂ =4). His payoff in that case is therefore 0. If he reports type 2 he
gets the object at a price of 1 if he is facing the simple mechanism (q1,t1); the corresponding
payoff is 1×4−1=3. On the other hand, if he is faced with (q2,t2) he does not get the object,
and does not have to pay anything. Consequently, his payoff in that case is 0. So the worst-case
payoff both for truth-telling and for reporting type 2 is equal to 0, meaning that reporting type

11. Throughout the article, we slightly abuse terminology by identifying direct mechanisms with their outcome
functions.

12. Remember that we have also imposed risk neutrality.
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2 when the true type is 4 does not represent a profitable deviation. The same reasoning can be
applied to show that type 4 cannot do better by reporting 1 instead of 4. In fact, the “symmetry” in
the outcomes after reporting either type 1 or 2 implies that all three types are indifferent between
these two reports. Thus, in order to complete our argument we just have to show that neither type
1 nor type 2 can do better by reporting 4 than by telling the truth. This follows from the fact that
reporting 4 implies a payment of 4, which exceeds the valuations of both lower types.

Under truthful reporting, both outcome functions in � generate an expected revenue of 9/4:

(q1,t1) : 0× 1

4
+1× 1

4
+4× 1

2
= 9

4

(q2,t2) : 1× 1

4
+0× 1

4
+4× 1

2
= 9

4
.

This expected revenue exceeds the expected revenue of 2 which is achieved by the optimal
standard mechanism (which is a TOC offer at a price of 4). This shows the seller can do strictly
better by adopting an ambiguous mechanism rather than limiting himself to a standard mechanism.

The above analysis relies on two crucial assumptions on which we want to comment further.
First, in order for the ambiguous mechanism � to generate a higher expected revenue than the
best simple mechanism it is crucial that the seller has the possibility to commit to one of the two
simple mechanisms in � before the agent makes his choice. It is straightforward to see that if
the principal does not have the possibility to commit but makes his choice between (q1,t1) and
(q2,t2) ex post, then truth-telling is no longer optimal. Without commitment the principal would
always choose the first outcome function after receiving message θ̂ =2 and the second one upon
getting message θ̂ =1. But if that is the case, then type 4 of the buyer would never want to report
his type truthfully since by choosing either of the other two messages he could get the object
with the same probability but at a lower price. Thus, in the absence of commitment to a specific
outcome function in �, the agent can predict the seller’s ex post choice and will thus not perceive
his situation as ambiguous. But then adopting an ambiguous mechanism cannot help the seller
to achieve a higher payoff if he is not able to commit to a specific element of the ambiguous
mechanism ex ante.

Given this observation, it is important to understand that the commitment that ambiguous
mechanisms require is no stronger than the kind of commitment imposed in most of the mechanism
design literature. The only difference is that we assume that the principal can commit to something
that the agent cannot observe before he makes his choice. We can assume that the simple
mechanism to which the principal commits is described in some document that is stored in a
place the access to which is jointly controlled by the principal and the agent (so that ex post they
can verify together which allocation-transfer pair should be implemented). Put differently, what
matters is the verifiability of the mechanism and of the messages vis-a-vis a third party who can
guarantee the correct implementation of the mechanism.

The second important assumption on which the analysis of the above example builds is the
assumption that the buyer considers it possible that the seller has committed to either of the two
outcome functions in �. This is a reasonable assumption in light of the fact that the seller is not
providing the buyer with any explicit information as to which outcome function he might have
chosen. However, the buyer should only really expect the seller to choose a simple mechanism in
� that yields the seller the highest profit. The possibility to indirectly infer the simple mechanism
chosen by the principal is incompatible with the idea that the buyer perceives the mechanism that
he is presented as ambiguous. We therefore impose the requirement that the principal can offer
only ambiguous mechanisms such that all their elements generate the same expected revenue
provided the agent acts optimally based on the belief that the principal might have committed
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to any of the outcome functions in the ambiguous mechanism. We refer to this condition as
consistency. It is due to this consideration that we have chosen � in such a way that both its
simple mechanisms generate the same expected revenue.

Finally, the consistency of the proposed ambiguous mechanism guarantees that the seller
obtains the same expected revenue regardless of which of the two outcome functions is chosen.
Therefore even if the seller was ambiguity averse and a third party were to choose an outcome
function, he would not be exposed to ambiguity by the ambiguous mechanism. That is, even if
the seller is ambiguity averse himself the proposed mechanism guarantees him a higher payoff
than the best non-ambiguous mechanism.

3. FRAMEWORK

Throughout the first part of the article, we consider the mechanism design problem of a principal
selling a single unit of a good to a single agent. The notation and terminology that we introduce
below generalize in the obvious way to the case of multiple agents, which we consider in
Appendix B.

3.1. Allocations and preferences

An allocation is a pair (x,τ )∈X ×R, where x∈X =[0,1] denotes the probability with which the
good is transferred to the agent, and τ the monetary transfer the agent has to pay to the principal.13

With a slight abuse of terminology, we will typically use the term “allocation” to indicate the
non-monetary component x of a pair (x,τ ). The agent’s preferences over X ×R depend on his type
θ ∈�⊂R. More specifically, we assume that they are represented by the linear utility function

u(x,τ )=xθ −τ.

The agent’s valuation of the good, that is, his type θ , is his private information. Throughout the
first part of the article, we assume that � is a finite set with N elements and we index types so
that θn is increasing in n. The principal’s beliefs regarding the agent’s type are described by the
probability distribution p= (p1,...,pN ).

The agent is ambiguity averse in the sense of Gilboa and Schmeidler (1989). That is, in a
situation where his beliefs are described by a family of distributions over allocation-transfer
pairs, �, his utility is given by

inf
λ∈�

Eλ[xθ −τ ].
The principal is risk and ambiguity neutral. His objective is to maximize expected revenue,

that is, the expected transfer paid by the agent. We show in Section 6.2 that our main results go
through also under the assumption of an ambiguity averse principal. Allowing for this possibility,
however, does not add anything of interest to our analysis as the central insights that we obtain
are driven by the agent’s ambiguity aversion.

3.2. Simple versus ambiguous mechanisms

A simple mechanism is a triple (S,q,t), where S is a set of messages that the agent may send to the
principal, and the functions q and t map S into X and R, respectively. q(s) is the probability with

13. Instead of interpreting x as the probability with which the indivisible good is transferred one can equivalently
assume that the good is perfectly divisible and that x represents the share given to the agent.
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which the good is transferred to the agent if he sends message s, while t(s) is the corresponding
transfer that the agent has to pay to the principal.14 We refer to q and t, respectively, as allocation
and transfer rules on S; the pair (q,t) is the outcome function of the mechanism. A direct simple
mechanism is a simple mechanism such that S =�. Since all direct mechanisms share the same
message space, we drop the latter from the notation and identify the direct mechanism (�,q,t)
with its outcome function (q,t).

Mechanism design models typically assume that besides committing to a particular outcome
function the principal also fully and credibly reveals it to the agent. In effect, if the agent has
standard expected utility preferences then the latter part of this assumption is innocuous, as the
principal cannot gain anything from concealing this information.15 The central insight of this
article is that this is no longer true with an ambiguity averse agent. Indeed, we show that it is
typically in the principal’s best interest not to inform the agent about the exact outcome function
he commits to. Instead, he can benefit from communicating the rules of the mechanisms in an
ambiguous way, by only announcing that it belongs to a certain set. The notion of an ambiguous
mechanism captures the idea of such ambiguous rules.

Definition 1. (Ambiguous mechanism). An ambiguous mechanism is a pair (S,�), where S is
a set of messages, and � is a set of outcome functions defined on S, i.e. �⊂XS ×R

S.16 A generic
element of � is denoted by (q,t), where q∈XS and t ∈R

S.

Before we go on, a few remarks on the interpretation and purpose of the concept of an
ambiguous mechanism are in order. After choosing a set of possible messages, S, the principal
commits to an outcome function (q̂, t̂). This commitment may be achieved, say, by depositing
(q̂, t̂) with an uninterested third party. The agent is not fully informed about the chosen outcome
function. Instead the principal limits himself to telling the agent that it belongs to a set�. Of course,
by announcing such ambiguous rules he exposes the agent to uncertainty about the consequences
of his messages, and we discuss the principal’s motives for doing so in the next section.

The requirement that (q̂, t̂)∈� rules out the possibility that the principal completely deceives
the agent with regard to (q̂, t̂). We stress once more the fact that the principal commits to (q̂, t̂)
before the agent sends his message; therefore the choice of (q̂, t̂) cannot be conditioned on the
message.

3.3. Agent’s strategies and beliefs

Once the designer has specified an ambiguous mechanism, (S,�), the agent chooses a message
from S. A strategy for the agent is a function σ that maps � into S, i.e. σ ∈S�.

We assume that the agent cannot use mixed strategies. This assumption, which is commonly
adopted in the ambiguity literature, has some bite, as an ambiguity averse individual facing two

14. Note that our definition of a simple mechanism allows for random allocations but not for random transfers: the
range of t is R, not the set of probability measures over R. Given that both the principal and the agent are risk neutral,
restricting attention to deterministic transfer schemes is without loss of generality. A mechanism with random transfers
can be replaced by one with deterministic transfers that specifies for each type report the expected values of the random
transfer scheme. Doing so does not alter the two players’ expected payoffs for any decision that the agent may take. The
same is true for random allocation rules if the good is perfectly divisible. If the good is not divisible, then allowing for
random allocations expands the set of possible allocations.

15. Under any standard equilibrium concept the agent would know in equilibrium which function has been chosen
by the principal.

16. As argued earlier, the restriction to ambiguous mechanisms with (sets of) deterministic outcome functions is
without loss of generality in an environment with risk neutral players.
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alternatives with uncertain consequences may strictly prefer mixing over the alternatives to each
of the two.17 However, we maintain that besides being pervasive in the literature, the assumption
is especially weak in our context. Unlike an expected utility maximizer, an ambiguity averter
may ex ante wish to randomize even over alternatives that he is not indifferent over. But if the
individual has strict preferences over the alternatives he is randomizing over, then the strong ex
ante incentives to mix conflicts with the individual’s ex post incentives to implement the outcome
of the randomization. In this case, allowing for mixed strategies may therefore matter only if the
agent can commit to obeying the recommendation of some randomizing device. Making such a
commitment in a mechanism design context is difficult, because the designer can do better by
declining reports generated by such devices, that is, by requiring reports to be made directly by
the agent.18

The set of optimal strategies for the agent depends on his beliefs regarding the outcome
function (q̂, t̂) to which the principal has committed himself. The agent’s only piece of hard
information in this respect is that the function belongs to �. On the other hand, the agent knows
that the principal seeks to maximize his revenue. Given the agent’s ambiguity aversion, it thus
seems appropriate to assume that his belief set contains the entire family 	(�) of probability
measures on �, provided that such a belief set is not incompatible with the principal’s optimizing
behaviour in a sense that we formalize next.

For any ambiguous mechanism (S,�), let 
∗(S,�) designate the corresponding set of optimal
strategies for the agent, when his beliefs are given by 	(�). Since the agent is risk neutral,
calculating the infimum of his expected payoffs with respect to 	(�) delivers the same value as
the one obtained when attention is restricted to �. Thus, the set 
∗(S,�) is the set of all σ ∈S�

such that for each θ ∈�,

σ (θ )∈argmax
s∈S

inf
(q,t)∈�

[q(s)θ −t(s)].

Definition 2. (Consistency). An ambiguous mechanism (S,�) is consistent with respect to σ ∈

∗(S,�) if under σ all outcome functions in � yield the same expected revenue to the principal,
i.e. if for all (q,t),(q′,t′)∈�

Ep[t(σ (θ ))]=Ep[t′(σ (θ ))].

The ambiguous mechanism (S,�) is consistent if it is consistent with respect to some σ ∈
∗(S,�).

Consistency requires that each element of the ambiguous mechanism � delivers the same expected
revenue to the principal if the agent bases his choice on the belief set 	(�). To shed further
light on this condition, consider a situation where it is not satisfied. Thus, suppose that the
principal proposes an ambiguous mechanism (S,�) such that for every σ ∈
∗(S,�) there exist
(q,t),(q′,t′)∈� with Ep[t(σ (θ ))]<Ep[t′(σ (θ ))]. In this case, the agent’s assumption that the
principal might have chosen any of the elements in � leads to the conclusion that the principal
strictly prefers some elements of � over other elements of �, if he correctly predicts the agent’s

17. Ever since Raiffa (1961), it is well known that randomization may help the agent to hedge against the uncertainty
involved in the two alternatives. Recently, Saito (2015) provided an axiomatization of ambiguity aversion which does
not give rise to a hedging motive.

18. While this argument only refers to randomizations over alternatives that the individual does not consider as
equivalent, it is sufficient for our purpose. In our context, the agent will have to decide which type to report to the
principal. The optimal direct mechanism that we will derive can be arbitrarily closely approximated by a mechanism with
the property that no type of the agent is indifferent between any two messages.
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belief and strategy. Consistency rules out such contradictory beliefs. It is essentially an equilibrium
condition for the two-stage game played by the two parties. In equilibrium, the agent should not
entertain the possibility that a certain outcome function is chosen, if the strategy that he intends
to implement in response to this belief implies that the outcome function does not maximize the
designer’s payoff.19

Finally, we remark that requiring the seller to be indifferent before the buyer reports his type
rather than after, is to the seller’s benefit. If the seller could choose his preferred simple mechanism
in the ambiguous mechanism after the report, he would choose a mechanism with the highest
transfer given the report. The buyer would foresee this and calculate his payoffs accordingly.
In particular, every type of the agent would associate with any given report the same worst
case scenario, namely the outcome function in � with the smallest probability of trade (for that
report) among the simple mechanisms that specify the highest transfer (for that report). But then
the agent’s behaviour vis-a-vis the ambiguous mechanism � would be exactly the same as the
agent’s behaviour vis-a-vis a simple mechanism that specifies only these worst case allocations
and transfers.20 Consequently, the expected revenue of the designer would also be exactly the
same. Thus, if the designer does not commit ex ante to an element in �, he cannot do any better
than by using only simple mechanisms.

4. OPTIMAL AMBIGUOUS MECHANISMS

In designing the optimal ambiguous mechanism, the principal has to take into account two types
of constraints. First, he must respect the consistency condition that we have discussed in the
preceding section. Second, since we assume that the buyer’s participation in the mechanism is
voluntary, the principal must make sure that the mechanism allows each type of the agent to earn
at least his outside option. We assume that the latter is equal to zero for every type. Thus, the
principal’s problem is to choose among all ambiguous mechanisms (S,�) for which there exists
some σ ∈
∗(S,�) satisfying the conditions

Ep[t(σ (θ ))]=Ep[t′(σ (θ ))] for all (q,t),(q′,t′)∈�, (1)

inf
(q,t)∈�

{q(σ (θ ))θ −t(σ (θ ))}≥0 for all θ ∈�, (2)

the one that delivers the highest expected revenue.
In what follows we show that the principal’s problem can be substantially simplified.

4.1. The Revelation Principle

First we prove a version of the Revelation Principle that applies to our environment, by showing
that the principal can without loss of generality offer the agent an ambiguous mechanism that (i)
asks the agent to report his type, and (ii) is constructed in such a way that the agent is willing to
do so in a truthful manner.

Definition 3. (Incentive compatibility). An ambiguous mechanism (S,�) is direct if S =�, in
which case we identify the mechanism with its set of outcome functions �, and for all (q,t)∈�

19. In Section 6.2, we show that the assumption of consistency is without loss of generality when also the seller
has maxmin expected utility preferences.

20. Formally, this simple mechanism specifies the same messages, S, and its outcome function (q,t) is such that for
all s, t(s)=sup(q′,t′)∈�{τ ∈R : t′(s)=τ } and q(s)= inf (q′,t′)∈�{x∈X :q′(s)=x and t′(s)= t(s)}.
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and 1≤n≤N we write qn and tn for q(θn) and t(θn), respectively. A direct ambiguous mechanism
� is downward incentive compatible if

inf
(q,t)∈�

{qnθn −tn}≥ inf
(q,t)∈�

{qmθn −tm} for all 1≤m<n≤N, (DIC)

upward incentive compatible if

inf
(q,t)∈�

{qnθn −tn}≥ inf
(q,t)∈�

{qmθn −tm} for all 1≤n<m≤N (UIC)

and incentive compatible if it is both downward and upward incentive compatible.

Proposition 1. (Revelation Principle). Let (S,�) be an ambiguous mechanism that is consistent
with respect to σ ∈
∗(S,�). The direct ambiguous mechanism

�′ =
{

(q′,t′)∈X�×R
� :q′ =q◦σ,t′ = t◦σ for some (q,t)∈�

}
is incentive compatible and consistent with respect to truth-telling.

Proof. Proofs of the results can be found in the Appendix, unless stated otherwise. ‖
The Revelation Principle guarantees that given any consistent ambiguous mechanism, (S,�),

we can find a direct ambiguous mechanism, �′, satisfying incentive compatibility and such that,
element by element, (S,�) and �′ generate the same allocations and transfers, and hence give
both the principal and the agent the same payoff. As a consequence, the principal can restrict
himself to direct ambiguous mechanisms that satisfy incentive compatibility, consistency with
respect to truth-telling and individual rationality (condition (2)). In the case of direct ambiguous
mechanisms �, the latter may be rewritten as

inf
(q,t)∈�

qnθn −tn ≥0 for all 1≤n≤N . (IR)

Thus, the principal’s problem can be written as:

max
R∈R,�⊆X�×R�

R (P)

s.t. R=
N∑

n=1

pntn for all (q,t)∈�, (C)

(DIC), (UIC) and (IR).

We now consider the relaxed version of this problem where constraint (UIC) is removed, and
show through a sequence of lemmata that the set of feasible mechanisms for the relaxed problem
can be substantially restricted while leaving the problem’s value unchanged. Finally, we prove
that all optimal mechanisms for the thus modified relaxed problem in fact satisfy (UIC), and are
therefore also optimal solutions of the original Problem (P). Given a direct ambiguous mechanism
� that satisfies (C), in what follows we write R(�) for the expected revenue associated with every
simple mechanism in the ambiguous mechanism �, so that

R(�)=
N∑

n=1

pntn,

for all (q,t)∈�.
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4.2. Uniform, minimal, and monotonic ambiguous mechanisms

We first show that the relaxed version of Problem (P) always admits solutions that do not expose
truthfully reporting types to ambiguity, except possibly the highest type. That is, the truthtelling
payoff of every type θn, n<N , is constant across the outcome functions of the optimal ambiguous
mechanism. Moreover, at the optimum for each type one of the downward incentive constraints
must be binding. Thus, the truthtelling payoffs coincide with the payoff that types can obtain
from the most attractive downward deviation. In what follows we refer to these properties as
uniformity.

Definition 4. (Uniformity). A direct ambiguous mechanism � is uniform if

q1θ1 −t1 =0, for all (q,t)∈�,

qnθn −tn = max
1≤m<n

inf
(q′,t′)∈�

{q′
mθn −t′m}, for all 1<n<N and all (q,t)∈�, (Uni)

qNθN −tN = max
1≤m<N

inf
(q′,t′)∈�

{q′
mθN −t′m}, for some (q,t)∈�.

Note that uniformity implies both downward incentive compatibility ((DIC)) and individual
rationality ((IR)). This is immediate to see in the case of (DIC). As for (IR), observe that for all
(q,t)∈� and all 1<n≤N we have

q1θn −t1 ≥q1θ1 −t1.

That is, type θn, n>1, cannot obtain a lower payoff from reporting θ1 than type θ1 himself. By the
first condition in the definition of uniformity the lowest type’s payoff from truth-telling is zero.
But then, the second and third condition of uniformity can be satisfied only if the truth-telling
payoffs of all types θn, n>1, are (weakly) larger than zero too.

Lemma 1. For every direct ambiguous mechanism � satisfying (C), (DIC), and (IR) there is a
direct ambiguous mechanism �′ satisfying satisfying (C), (Uni), and R(�′)≥R(�).

The fact that imposing the uniformity condition (Uni) is without loss of generality—in the
relaxed problem where (UIC) is removed but, as we argue later, in Problem (P) as well—
resembles the standard result from mechanism design, stating that at the optimum the downward
incentive compatibility constraints and the individual rationality constraint of the lowest type are
binding. Ambiguity aversion and the consistency requirement, however, demand special attention
in establishing this fact. In the proof of the lemma we show that if any simple mechanism, (q,t),
in the ambiguous mechanism � gives the lowest type a strictly positive payoff, then it can be
changed by increasing t1 to q1θ1 and decreasing the transfer tN in a way that leaves the simple
mechanism’s expected revenue unaltered. Given that the expected revenue remains constant, this
modification is neutral with respect to the consistency condition (C). Moreover, increasing the
lowest type’s transfer and decreasing the one of the highest type cannot possibly lead to a violation
of any downward incentive compatibility condition.

Using similar arguments, we show that the value of the designer’s problem is not affected if
he only considers ambiguous mechanisms � such that each (q,t)∈� satisfies the property that
truthful reporting of type θn, n≤N , yields the same payoff as the most attractive misreport of a
lower type (not necessarily the downward adjacent one).

In the statement of Problem (P), ambiguous mechanisms are allowed to be of any size. The
next result shows that the problem can be substantially simplified since attention can be restricted
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to ambiguous mechanisms that are both “small” and have a simple structure. In particular, Lemma
2 shows that there is always a solution of the relaxed version of Problem (P) that contains N −1
(not necessarily distinct) simple mechanisms.21 Each one of these outcome functions serves the
purpose to deter downward deviations towards one particular report. We will henceforth refer to
mechanisms with this property as minimal mechanisms.

Definition 5. (Minimality). An ambiguous mechanism � is minimal if �={(q1,t1),...,
(qN−1,tN−1)}, with

qm
mθn −tm

m ≤q�
mθn −t�m for all 1≤�<N, and all m<n≤N . (Min)

Lemma 2. For every direct ambiguous mechanism �, satisfying (C) and (Uni) there is a direct
ambiguous mechanism �′ satisfying (C), (Uni), (Min), and R(�)≤R(�′).

The fact that each outcome function (qm,tm) of a minimal mechanism has to dissuade the agent
only from reporting θm when his true type is higher, provides the central intuition for why the
seller can do better with an ambiguous mechanism than with a simple mechanism. With multiple
outcome functions the designer has more instruments to take care of the incentive constraints.
Each simple mechanism in the ambiguous mechanism takes care of only a subset of incentive
compatibility constraints. While the outcome function (qm,tm) guarantees that no type θn >θm
wishes to report θm, another outcome function, (qm′

,tm′
), performs the same task with respect to

report θm′ . Each simple mechanism in the ambiguous mechanism is therefore less distorted than
the optimal non-ambiguous mechanism, which has to take care of all the incentive compatibility
conditions.

The principal’s ability to limit himself to minimal mechanisms has immediate consequences
for the case of a binary type set. In this case, having multiple simple mechanisms in the
ambiguous mechanism does not provide any advantage in handling the incentive constraints.
Indeed, when there are only two types Lemma 2 readily implies that the seller cannot do better
with an ambiguous mechanism containing multiple outcome functions than with a standard
non-ambiguous mechanism.

Corollary 1. If the type set � contains only two elements, then the use of ambiguous mechanisms
does not allow the principal to achieve a higher expected revenue than the one that he can obtain
with an optimal non-ambiguous mechanism.

Given this result we will mostly disregard the case of N =2 from here on. That is, until we
explicitly state otherwise, we assume throughout our analysis that there are at least three types.

We finally show that within the set of ambiguous mechanisms that are minimal and uniform, we
only have to consider ambiguous mechanisms that exhibit allocation rules that have a particularly
simple structure. More specifically, attention can be limited to mechanisms with allocation rules
that are equal to 1 for all except possibly one report. Moreover, the coordinates of the outcome

21. By allowing for the possibility that minimal ambiguous mechanisms contain multiple copies of one and the
same outcome function we slightly abuse the meaning of the term “set” that we are using when referring to ambiguous
mechanisms. The reasons for adopting this convention are purely notational.
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functions that are allowed to differ from 1 can be assumed to satisfy a monotonicity condition
defined across outcome functions.

Definition 6. (Monotonicity). A minimal direct ambiguous mechanism �={(q1,t1),...,
(qN−1,tN−1)} is monotonic if

qm
n =1 for all 1≤m<N,1≤n≤N,n �=m and (Mon)

qm
m ≤qn

n for all 1≤m<N,m≤n≤N −1.

Lemma 3. For every direct ambiguous mechanism �, satisfying (C), (Uni) and (Min), there is
a direct ambiguous mechanism �′ satisfying (C), (Uni), (Min), (Mon), and R(�′)≥R(�).

The intuition for the result that in the simple mechanism (qm,tm) only the allocation qm
m needs

to be left unrestricted is rather straightforward. We have observed earlier, that the purpose of
(qm,tm) is to prevent the agent from reporting θm when he is of a higher type. Since by uniformity
the truthtelling payoff of type θm has to be constant across outcome functions, it follows that the
payoff of higher types who value the good more, must be minimized by the outcome function
that awards the object with the lowest probability. Thus, qm

m ≤qm′
m for all m′ �=m. Finally, if

(qm,tm) takes care of the downward deviation constraints towards θm, then an increase of qm′
m

could neither affect the (downward) incentive compatibility of the mechanism nor its individual
rationality. Consequently, qm′

m can be set equal to one.
The second part of (Mon), qm

m ≥qm−1
m−1 for all m strictly between 1 and N , parallels the

monotonicity result in a standard mechanism design problem with ambiguity neutral agents,
where an allocation rule is implementable if and only if it is monotonic. This property translates
in a natural way into our setting with an ambiguity averse agent.

In the proof of the lemma, we show that this is the case because under a uniform ambiguous
mechanism the most attractive (downward) deviation option for type θn is the report that
guarantees the largest worst case allocation, i.e. the report that guarantees maxm<nmin1≤�<N ql

m.
Thus, if 1≤m′ <m<N , and qm′

m′ >qm
m, then there is no type θn, n>m, for whom the incentive

constraint with respect to θm is binding. Consequently, by an increase of qm
m up to qm′

m′ that
is accompanied by a corresponding increase of tm

m (so that the truth-telling payoff of type θm
remains unchanged) no downward incentive constraints of any type θn >θm is violated. Since
such an increase of qm

m (and the associated increase of tm
m ) does not affect the downward incentive

constraints of types θn, n≤m it follows that the assumed non-monotonicity can be eliminated
without affecting downward incentive compatibility. Through appropriate adjustments of the
transfers of the highest type (C) can be reestablished and (DIC) can be strengthened into (Uni).
None of these modifications affects (Min).

The three results above show that in solving the relaxed version of Problem (P), where (UIC)
is removed, one can restrict attention to mechanisms that satisfy condition (C), uniformity,
minimality, and monotonicity. We now show that properties (C), (Uni), (Min), and (Mon) are
actually sufficient for feasibility in the original Problem (P) where (UIC) is present.

Lemma 4. If a direct ambiguous mechanism � satisfies (Uni), (Min), and (Mon), then it also
satisfies (UIC).

The main result of this section now follows.
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Proposition 2. Every solution to problem

max
R∈R,�⊂X�×R�

R (P’)

subject to (C),(Uni),(Min) and (Mon),

is also a solution to Problem (P).

4.3. The optimal uniform, minimal, and monotonic ambiguous mechanism

We are now ready to derive an optimal ambiguous mechanism. First, we provide a useful
characterization of the constraint set of Problem (P’).

Lemma 5. A minimal and monotonic direct ambiguous mechanism �=
{(q1,t1),...,(qN−1,tN−1)} satisfies (Uni) if and only if the following hold:

tm
n =qm

n θn −
n−1∑
k=1

qk
k (θk+1 −θk) for all 1≤m,n≤N −1, (3)

max
1≤m<N

tm
N =θN −

N−1∑
k=1

qk
k (θk+1 −θk). (4)

Lemma 5 shows that the transfers of minimal, monotonic, and uniform mechanisms can be
expressed in terms of the allocation vector (q1

1,...,q
N−1
N−1). The only exception to this rule are the

transfers of the highest type. However, those are bounded above by an expression that depends
solely on (q1

1,...,q
N−1
N−1) (condition (4)). Conversely, any minimal and monotonic mechanism

the transfers of which satisfy conditions (3) and (4) is also uniform. Thus, solving Problem
(P’) amounts to optimally choosing allocations q1

1 ≤ ...≤qN−1
N−1 and transfers t1

N ,...,tN−1
N . All

other allocations are equal to one, while all other transfers are determined via (3) through the
choice of (q1

1,...,q
N−1
N−1). The two constraints that the transfers must satisfy are condition (4) and

consistency; i.e. t1
N ,...,tN−1

N together with the transfers that are determined through (3) must

be such that
∑N

n=1pntm
n is constant in m. Given these observations, we say that the vector of

allocations (q̄1
1,...,q̄

N−1
N−1) generates or induces the mechanism �={(q1,t1),...,(qN−1,tN−1)}, if

� satisfies all constraints of Problem (P’) and qm
m = q̄m

m for all 1≤m≤N −1.
Next we outline how to compute the expected revenue of the mechanism generated by

(q1
1,...,q

N−1
N−1). The problem is that one does not know for which m the maximum in (4) is

attained. However, the right-hand sides of (3) and (4) can be used to compute an upper bound on
the expected transfer, R̄m, of each outcome function (qm,tm) in the ambiguous mechanism that is
generated by (q1

1,...,q
N−1
N−1). Since the generated ambiguous mechanism needs to be such that all

the simple mechanisms yield the same expected transfer the relevant upper bound is the lowest
one. More precisely, let R̄m(q1

1,...,q
N−1
N−1) be the expected value of the sum of the terms in the

right-hand sides of (3) and (4):

R̄m(q1
1,...,q

N−1
N−1) = Ep[θ ]−pm(1−qm

m)θm −
N−1∑
n=1

qn
n(1−Pn)(θn+1 −θn),
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where Pn =∑n
k=1pk . If the designer chooses the ambiguous mechanism that is generated by the

vector of allocations (q1
1,...,q

N−1
N−1), his expected revenue under the outcome function (qm,tm)

cannot exceed R̄m(q1
1,...,q

N−1
N−1). In fact, since we require that

∑N
n=1pntm

n is constant in m it must
be the case that the transfers in � are such that for each 1≤m≤N −1 we have

Rm(�)= min
1≤l≤N−1

R̄l(q1
1,...,q

N−1
N−1). (5)

That is, the lowest upper bound on the expected revenue is binding and thus yields the expected
revenue of the ambiguous mechanism generated by (q1

1,...,q
N−1
N−1).

Since the seller is maximizing his expected revenue, an optimal choice of (q1
1,...,q

N−1
N−1) must

solve the problem

max
(q1

1,...,q
N−1
N−1)∈Q

min
1≤m≤N−1

R̄m(q1
1,...,q

N−1
N−1), (P”)

where Q is the set of all vectors Q= (q1
1,...,q

N−1
N−1)∈[0,1]N−1 whose components are weakly

increasing. The corresponding optimal transfers for the highest type, (t1
N ,...,tN−1

N ), are then
determined by condition (5), i.e. they are chosen so that condition (C) holds.

In order to streamline the presentation of the following results it is convenient to introduce an
assumption. We relax this assumption in the Appendix.

Assumption 1. Let pnθn ≤pn+1θn+1 for all n<N −1.

For all n≤N −1 we define the so called adjusted virtual valuation, ν̄n, as follows:

ν̄n =pnθn −
N−1∑
s=n

pnθn

psθs
(1−Ps)(θs+1 −θs).

We refer to ν̄n as adjusted virtual valuation because both its definition and its role are reminiscent
of the role of virtual valuations. In particular, in Proposition 3 below we show that the optimal
value of Q depends on the signs of the adjusted virtual valuations. In the statement of this result
we exploit the fact that the adjusted virtual valuation can cross zero only from below. This is
shown in the following lemma.

Lemma 6. If ν̄n ≤0 for 1<n≤N −1, then ν̄m ≤0 for all 1≤m<n.

We are now ready to state the main result of this section in which we characterize a solution
of Problem (P”).

Proposition 3. Suppose that Assumption 1 holds. Then the following is true:

(i) If ν̄1 >0, then (q̂1
1,...,q̂

N−1
N−1)= (1,...,1) solves Problem (P”).

(ii) If ν̄1 ≤0, let n∗ =max{n : ν̄n ≤0} and let Q̂= (q̂1
1,...,q̂

N−1
N−1) be defined by

q̂n
n =

{
0 if 1≤n≤n∗
1− pn∗θn∗

pnθn
if n∗ <n≤N −1.

Q̂ constitutes a solution of P”.
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Proposition 3 describes a solution of Problem (P”). If the ambiguous mechanism �̂ is generated
by Q̂ then �̂ is an optimal mechanism. With the exception of the transfers of the highest type, the
payments specified in the ambiguous mechanism �̂ can be computed using (3). The highest type’s
transfers are then chosen so that the expected revenue of each of the N −1 simple mechanisms in �̂

is equal to the optimal value of Problem (P”), R̂=minm R̄m(Q̂). We summarize these observations
in the following corollary.

Corollary 2. Suppose Q̂= (q̂1
1,...,q̂

N−1
N−1) solves Problem (P”) and that R̂ is the problem’s value.

Moreover, write (q̂m, t̂m), m=1,...,N −1, for the m-th element of the (optimal) ambiguous
mechanism generated by Q̂. Then, t̂m is given by

t̂m
n =

{
q̂m

n θn −∑n−1
k=1 q̂k

k (θk+1 −θk) if 1≤n<N

(R̂−∑N−1
n=1 pnt̂m

n )/pN if n=N .

If ν̄1 >0, then the optimal value of the designer’s problem is R̂=θ1. Otherwise, the optimal
expected revenue is

R̂= R̄n∗ =Ep[θ ]−pn∗θn∗ −
N−1∑

n=n∗+1

q̂n
n(1−Pn)(θn+1 −θn).

In our environment the buyer values the good more than the seller.Allocative efficiency would
therefore require that the good always be allocated to the buyer. According to Proposition 3, this is
typically not the case in the revenue maximizing ambiguous mechanism. The seller might distort
the allocative efficiency to increase the revenue, much like it is done in revenue maximizing simple
mechanisms. In Section 4.4, we will see that unlike in the case of optimal simple mechanisms
these distortions tend to vanish in environments with large type sets. An additional source
of inefficiency is introduced through the ambiguity the agent faces when presented with an
ambiguous mechanism. This inefficiency though regards only the highest type, for only his truth-
telling payoffs vary across outcome functions. For all other types, the uncertainty embedded in
the optimal ambiguous mechanism regards only the payoffs from deviations, which are never
realized.

Finally, it is interesting to compare the expected revenue of an optimal ambiguous mechanism
with the expected revenue of the best simple mechanism. Of course, every simple mechanism
constitutes a (trivial) ambiguous mechanism. Thus, simple mechanisms cannot possibly deliver a
higher revenue than the optimal ambiguous mechanism. But when is it the case that the designer
can do strictly better by using a (non-trivial) ambiguous mechanism?

This cannot be the case when Q= (1,...,1) solves Problem (P”). The ambiguous mechanism
that is generated by the allocation vector Q= (1,...,1) yields an expected revenue of R=θ1,
which is the same as the revenue obtained from a TOL offer (a simple mechanism) for θ1.

Therefore, a necessary condition for the optimal ambiguous mechanisms to yield a higher
expected revenue than the best simple mechanism is that Q= (1,...,1) is not a solution to Problem
(P”). We will argue that this condition is also sufficient. Towards that, assume that Q= (1,...,1)
is not a solution of (P”). We split the analysis into two cases, depending on whether or not a
TOL offer at the price θ1 is an optimal simple mechanism. In the first case, the highest expected
payoff from a simple mechanism, R̃, is θ1. On the other hand, since Q= (1,...,1), which also
generates a payoff equal to θ1, is not a solution to Problem (P”), the seller’s payoff from an
optimal ambiguous mechanism, R̂, is larger than θ1 and therefore larger than the seller’s payoff
from an optimal simple mechanism; i.e. R̂> R̃.
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As for the second case, suppose that a TOL offer at the price θ1 is not an optimal simple
mechanism. An optimal simple mechanism is then a TOL offer for some θn̄ where n̄>1. In the
Appendix, we show that in this case there is a q̄∈ (0,1) such that the ambiguous mechanism
generated by the vector Q= (q1

1,...,q
N−1
N−1), satisfying qn

n = q̄ for n≥ n̄ and qn
n =0 otherwise, does

strictly better than the best simple mechanism.
We summarize the preceding observations in the following proposition.

Proposition 4. Let θ1 >0.22 The use of ambiguous mechanisms is strictly beneficial for the
principal if and only if Q= (1,...,1) is not a solution of Problem (P”). That is, an optimal
ambiguous mechanism yields a strictly larger expected revenue than the best simple mechanism
if and only if ν̄1 <0.

Proposition 4 gives a sharp characterization of the situations where ambiguous mechanisms
strictly outperform simple mechanisms in terms of the solution of Problem (P”) (or equivalently,
in terms of the adjusted virtual valuation of the lowest type). Notice though that a (potentially
simpler) sufficient condition for that to be the case can be given in terms of the optimal simple
mechanisms. In particular, ambiguous mechanisms allow the seller to achieve a strictly larger
revenue whenever a TOL offer at the price θ1 is not an optimal simple mechanism. This follows
quite readily from the preceding proposition: if the optimal simple mechanism generates a larger
revenue than θ1, then so must also the best ambiguous mechanism. But then the ambiguous
mechanism generated by Q= (1,...,1) cannot be optimal and thus by Proposition 4 it follows
that the best ambiguous mechanism must do better than the best simple mechanism. So only when
computing the best simple mechanism yields a TOL offer at the price θ1 is there a chance that
this simple mechanism remains optimal even if one allows for ambiguous mechanisms.

We conclude this section with a three-type example that illustrates the above results.

Example 1. (Optimal ambiguous mechanisms in the three type case). Suppose that �=
{θ1,θ2,θ3} and Assumption 1 holds. The formula for the optimal Q given in Proposition 3
conditions on the signs of the adjusted virtual valuations which are given by

ν̄1 = p1θ1 −(1−p1)(θ2 −θ1)− p1θ1

p2θ2
p3(θ3 −θ2)=θ1 −(1−p1)θ2 − p1θ1

p2θ2
p3(θ3 −θ2)

ν̄2 = p2θ2 −(1−P2)(θ3 −θ2)= (p2 +p3)θ2 −p3θ3.

According to Proposition 3 it is optimal to set q1
1 =q2

2 =1 if ν̄1 >0. If ν̄1 ≤0 then q1
1 =0

is optimal. The optimal value of q2
2 depends in this case on the sign of ν̄2. More specifically,

q1
1 =q2

2 =0 is optimal only if we also have ν̄2 ≤0. If this condition does not hold (so that ν̄1 ≤0
and ν̄2 >0) we obtain the solution q1

1 =0 and q2
2 =1−p1θ1/p2θ2.

The transfers in the latter case are t1
1 =0,t1

2 =θ2,t1
3 =θ2 +p1θ1(θ3 −θ2)/p2θ2 and t2

1 =θ1,t2
2 =

(1−p1θ1/p2θ2)θ2,t2
3 =θ2 +p1θ1(θ3 −θ2)/p2θ2. The expected value of these transfers is R̂= (p2 +

p3)θ2 +p1p3θ1(θ3 −θ2)/p2θ2. The condition ν̄2 >0 implies that a TOL offer at price θ2 yields a
higher payoff for the seller than an offer at price θ3. Therefore, a revenue maximizing simple
mechanism for the seller is either an offer at price θ2 or θ1. In the first case, the ambiguous
mechanism clearly yields a higher profit since R̂−(p2 +p3)θ2 =p1p3θ1(θ3 −θ2)/p2θ2 >0. In the
second case observe that the condition ν̄1 ≤0 is equivalent to R̂−θ1 ≥0. Since θ1 is the revenue

22. This assumption is made solely for ease of exposition.
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of the optimal simple mechanism we can conclude that the ambiguous mechanism does strictly
better than the best simple mechanism if ν̄1 <0. If ν̄1 =0, then q1

1 =q2
2 =1 is optimal too. In

this case both the optimal simple mechanism and the optimal ambiguous mechanism yield an
expected revenue of θ1.

4.4. Increasing the number of types

Consider the ambiguous mechanism generated by Q= (0,...,0).23 This mechanism takes a
particularly simple form: the transfer rule corresponding to the m-th outcome function, tm, is
given by

tm
n =

⎧⎨
⎩

0 if n=m
θn if n �=m,N
θN −(pmM θmM −pmθm)/pN if n=N .

The expectation of this transfer is R=Ep[θ ]−pmM θmM . So the ambiguous mechanism generated
by Q= (0,...,0) extracts all of the agent’s (expected) surplus except for type θmM ’s contribution,
pmM θmM . These observations suggest that in environments with large type sets the designer should
be able to essentially extract the full rent from the agent. This is confirmed in the following
proposition, which gives a more precise formulation of this insight.

Proposition 5. (Full surplus extraction in the limit). Let {�N ,pN }N be a sequence of finite
environments, such that |�N |=N. Assume the limit limN→∞EpN [θN ] exists. Moreover, let m̄N be

such that pN
m̄N

θN
m̄N

≥pN
l θN

l for all 1≤ l≤N −1 and write R̂N for the revenue that the designer can

generate with the an optimal ambiguous mechanism in the N-th environment. If pN
m̄N

θN
m̄N

N→∞−→ 0
then

R̂N

EpN [θN ]
N→∞−→ 1.

That is, in the limit, the designer is able to extract all of the agent’s surplus.

Proof. By our preceding observations, for all N we have

EpN [θN ]≥ R̂N ≥EpN [θN ]−pN
m̄N

θN
m̄N

.

Dividing both sides by EpN [θN ] and taking the limit yields the result. ‖

In order to get a better intuition for this result, consider again the type of ambiguous mechanism
described above. In such a mechanism, for each n<N , the outcome function (qn,tn) assigns the
good with probability one to every type except type θn, who is excluded from trade (i.e. he
receives the good with probability zero). Moreover, under (qn,tn) all types, except θn and θN ,
are charged their valuations. The fact that under (qn,tn) type θn does not get the good not only
implies that type θn himself cannot get a strictly positive payoff from revealing his type, but it

23. Remember that �={(q1,t1),...,(qN−1,tN−1)} is generated by Q, if � satisfies properties (C), (Uni), (Min),
(Mon), and (q1

1,q
2
2,...,q

N−1
N−1)=Q.



[10:08 2/12/2016 rdw051.tex] RESTUD: The Review of Economic Studies Page: 257 237–276

DI TILLIO ET AL. THE DESIGN OF AMBIGUOUS MECHANISMS 257

also means that no other type can achieve a strictly positive payoff from reporting θn. Thus, the
outcome function (qn,tn) guarantees that (downward) deviations towards θn are unattractive. In
the same way each other outcome function (qm,tm), m �=n makes sure that the agent does not
have an incentive to report θm unless that is his true type. Since each single outcome function in
the ambiguous mechanism has to take care of the deviation incentives towards just one type, they
can be chosen freely (i.e. unconstrained by incentive considerations) for all other possible reports.
In particular, it is feasible to specify that for each other message (except θN ) the agent gets the
good for sure in exchange of a payment that corresponds to his report. The highest type does not
necessarily have to pay his valuation since his transfers are used to guarantee consistency across
outcome functions.

In the case of simple mechanisms, all deviation incentives have to be taken care of by a single
outcome function. In order to do so, this single outcome function needs to be distorted much
more than each single element of an ambiguous mechanism.

The downside of a type’s exclusion from trade is that no rent can be extracted from him. Since
all outcome functions must yield the same expected revenue, all of them can extract only as much
as the one that excludes the type with the largest contribution to the expected surplus. If the set
of types increases and the likelihood of each single type decreases, the cost of excluding each
single type decreases as well.

In a context with a continuum of types and an atomless type distribution, the weight of
each single type is exactly zero. For such environments, we obtain the following corollary to
Proposition 5.

Corollary 3. (Full surplus extraction). Suppose that � is a compact interval in R and that
the type distribution P is atomless. Then the ambiguous mechanism, �={(qθ ,tθ ),θ ∈�}, where
(qθ ,tθ ) is defined by

qθ
θ ′ =

{
0 if θ ′ =θ

1 else
tθθ ′ =

{
0 if θ ′ =θ

θ ′ else,

is individually rational, incentive compatible and consistent. Moreover, � extracts the full surplus
from the agent, that is R(�)=Ep[θ ].

Corollary 3 tells us that the designer can achieve full surplus extraction by using an
appropriately constructed ambiguous mechanism. Even more interestingly, we learn from this
result that full surplus extraction can be achieved without knowing the details of the type
distribution. All that the seller needs to know is that the set of types is large (i.e. a continuum)
and that the type distribution is not too concentrated on single points (i.e. atomless). Notice also
that in this case the mechanism is ex post efficient with probability one. That is, each simple
mechanism transfers the good to the agent with probability one.

5. NAIVE AMBIGUOUS MECHANISMS

In the preceding sections, our attention has been focused on the characterization of optimal
ambiguous mechanisms. However, optimal ambiguous mechanisms can be rather complex objects
since their size (i.e. the number of outcome functions they are composed of) essentially coincides
with the size of the type set. This observation naturally triggers the question if complexity is
a necessary feature not only of optimal ambiguous mechanisms but of all “well-performing”
ambiguous mechanisms. The answer to this question is of foremost importance if we want to
gauge the applicability of ambiguous mechanisms in real-world settings. In order to show that
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the answer is indeed negative in what follows we construct a class of ambiguous mechanisms
which, despite their very basic and intuitive structure, outperform all simple mechanisms. We
refer to this type of ambiguous mechanisms as naive ambiguous mechanisms.

Suppose that there is an agent with valuations distributed over [0,1] with a distribution F that
has strictly positive density on the whole interval. Let p̃ be the optimal TOL offer for the seller;
notice that p̃>0. Let θ̃ ∈[p̃/2,p̃] be defined by F(p̃)−F(θ̃ )=F(θ̃ )−F(p̃/2). The point θ̃ splits
the interval [p̃/2,p̃] into two equiprobable intervals.

The naive ambiguous mechanism �, corresponding to the TOL price p̃, consists of two simple
mechanism (q1,t1) and (q2,t2). Both simple mechanisms allocate the good to the buyer at the
price p̃ if he reports a valuation above p̃ and do not allocate the good to the buyer (nor make
him pay anything) if he reports a valuation below p̃/2. If the agent reports a type in the interval
[p̃/2,p̃] the simple mechanism (q1,t1) allocates the object to him only if his report is in [θ̃ ,p̃] in
which case he pays p̃/2. The simple mechanism (q2,t2), on the other hand, awards the object to
the agent who reports a type in [p̃/2,p̃] only if that report is in [p̃/2,θ̃ ], again at price p̃/2. In the
other cases the agent does not receive the object nor pays anything.

It is easy to verify that reporting truthfully is optimal for the buyer. If his type is above p̃ he
obtains a strictly positive payoff by accepting the price p̃ (reporting a type above p̃). On the other
hand, since the buyer contemplates all distributions over the two simple mechanisms as possible,
he expects not to be alloted the object when his type is above p̃/2 and he reports a type in [p̃/2,p̃].
Therefore his payoff from reporting a type in that interval is 0. Types below p̃/2 would expect
to obtain the object at the price p̃/2 if they reported a type in [p̃/2,p̃] and would thus receive a
negative payoff.

The seller obtains an expected payoff of [1−F(p̃)]p̃+[F(p̃)−F(p̃/2)]p̃/4 from both simple
mechanisms. That is, his expected payoff is [F(p̃)−F(p̃/2)]p̃/4 larger than the expected payoff
from the optimal simple mechanism.

The above described direct mechanism can be implemented in a very simple way. The seller
offers the agent to choose between the following three options: (1) getting the object with certainty
at the price p̃, (2) facing an Ellsberg urn with an unknown composition of balls of two colours, or
(3) walking away.24 If the agent decides to take the ambiguous lottery and guesses correctly the
colour of the ball that is drawn from the urn he obtains the object at the price p̃/2 (50% discount),
otherwise he does not obtain the object. For types above p̃ it is optimal to choose the object at
the price p̃ and for the types below p̃/2 to walk away. There is an optimal strategy for types in
[p̃/2,p̃] such that the types in this interval below θ̃ choose one colour and the types above chose
the other. There are of course other optimal strategies for the agent depending on which of the
colours the types in the interval [p̃/2,p̃] choose. This notwithstanding, the seller cannot make a
smaller profit than he makes from the optimal simple mechanism.25 A naive mechanism can thus
be thought of as a choice between a TOL offer and an ambiguous lottery that offers the chance
of getting the good at a 50% discount.

24. For example, the seller tells the agent that the urn contains two balls and that the balls are either blue or yellow,
but does not tell the agent how many blue and yellow balls there are in the urn.

25. Notice that if the seller instructs the buyer to choose one colour if his type is in [θ̃ ,p̃] and the other if his type
is in [p̃/2,θ̃ ] the seller in expectation receives the same payoff regardless of the composition of the colours in the urn,
thereby achieving something akin to consistency. However, even if he delegates the choice of colours in the urn to the
third party and does not instruct the buyer on what colour to choose his payoff is bounded below by p̃ as long as the buyer
believes any composition of the balls is possible.
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6. DISCUSSION AND EXTENSIONS

6.1. Payoff irrelevant information and the “splitting” of types

In Subsection 4.4, we have seen that the share of the surplus that the designer can extract from
the agent is the larger “the more types there are”. In particular, if types are distributed atomlessly
on an interval, then full surplus extraction is possible. In this section, we use this insight to argue
that the principal should not only elicit the agent’s payoff types, but that he can benefit also from
conditioning outcomes on non-payoff-relevant information that the agent may hold.

In order to see this, consider a setting where the agent’s type is bi-dimensional. The first
component of the agent’s type, θ ∈�={θ1,...,θN }, represents his willingness to pay for the
good. The other component, v, describes some unobservable characteristic of the agent which
has no bearing on the value that the agent assigns to the good. For convenience, we assume that
v belongs to the finite set V ={v1,...,vK }∈R.

From a purely technical point of view, the crucial property of the previously considered single
dimensional setting was the fact that there the type set comes with a natural order along which
the agent’s willingness to pay increases. But now observe that the same property holds in our new
bi-dimensional setting if we order the type set �×V in a lexicographic way, i.e. if types (θ ′,v′)
and (θ ′′,v′′) are ordered according to their first component as long as those do not coincide, and
according to their second component whenever θ ′ =θ ′′ holds. This means that the characterization
result in Proposition 3 and all associated results on the achievable expected revenue reported in
Corollary 2, Proposition 5, and Corollary 3 apply to the bi-dimensional setting discussed above.
In particular, it follows that the expected revenue (typically) increases when the number of types
increases. But in this new setting an increase in the number of types can be achieved by simply
adding more payoff irrelevant type components (i.e. by increasing K). In the example below
we show this for a situation where we double the number of types by moving from a setting
with N =2,K =1 (i.e. two payoff relevant type components and a trivial payoff irrelevant type
dimension) to a setting with N =2,K =2.

Intuitively speaking, using the payoff irrelevant part of a type serves the purpose of “splitting”
payoff types into multiple types, each of which has a smaller probability. In the preceding
subsection, we showed why it is desirable from the designer’s perspective to have many types
that occur with small probabilities. That argument does not rest on the assumption that types are
strictly different in terms of their payoff relevance. Instead, it applies equally to situations where
the number of types is increased without changing anything in the payoff relevant dimension of
the type distribution. The following example demonstrates this.

Example 2. (The benefits of eliciting payoff irrelevant information). Consider the following
simple environment. The type set is given by �×V , where �={1,3} and V ={L,H}. The type
distribution is uniform and the type set is endowed with the obvious lexicographic ordering.

If the principal ignores the payoff irrelevant part of the agent’s type then for him the situation
is as if he was facing an agent with only two (equally likely) types, 1 and 3. By Corollary 1, the
best mechanism that the designer can offer in an environment with only two types is a simple
mechanism. It is straightforward to see that the optimal simple mechanism, (q̃, t̃), is defined by
(q̃(1), t̃(1))= (0,0), (q̃(3), t̃(3))= (1,3). The expected revenue generated by this mechanism is
R̃=3/2.

Now assume that the designer takes into account also the payoff irrelevant component of the
agent’s type. Then he can offer the ambiguous mechanism � composed by the outcome functions
described in the Table 3.

The above represented mechanism generates an expected revenue of 7/4 which strictly
exceeds the expected revenue that the best simple mechanism produces (3/2). This confirms
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TABLE 3
An ambiguous mechanism conditioning on payoff-irrelevant type dimensions

(θ,v) (1,L) (1,H) (3,L) (3,H)

(q(1,L),t(1,L)) (0,0) (1,1) (1,3) (1,3)
(q(1,H),t(1,H)) (1,1) (0,0) (1,3) (1,3)
(q(3,L),t(3,L)) (1,1) (1,1) (2/3,2) (1,3)

the observations that we have made in the preceding paragraphs: the seller can extract a larger
share of the surplus by constructing a mechanism that conditions on payoff irrelevant components
of the type.

6.1.1. “Creation” of types. In the preceding discussion, we have seen that the seller can
benefit from adopting an ambiguous mechanism that elicits not only payoff relevant information
but also payoff irrelevant aspects of the agent’s type. Therefore even if the agent does not have
such information to start with, the seller should induce him to acquire it. A simple way to achieve
this would be to construct a randomization device that privately discloses the outcome of the
randomization to the buyer. If the random device replicates an atom-free distribution then the
buyer’s post draw private information must also be atom free. We have seen earlier that in such
a situation the seller can extract the full surplus from the buyer.

Notice that the above discussed “type creation process” must take place before the revelation
game is played. Thus, ambiguous mechanisms that are based on type creation do not belong
to the class of static ambiguous mechanisms that we have considered so far. Consequently, the
discussion in the preceding paragraph is not in contradiction with our findings in the earlier
sections where we have derived the optimal ambiguous mechanism for a given finite set of types.
Moreover, the possibility of creating types does not reduce the relevance of those findings. On
the one hand, the analysis for a given type set is by itself of theoretical interest. On the other
hand, that analysis constitutes the basis upon which our discussion of the benefits of type splitting
rests. Finally, also from a more applied perspective the preceding results retain their importance.
We have pointed out that optimal ambiguous mechanisms may well be prohibitively complex
to be applied in real-world settings even when the possibility of type splitting/creation is not
considered. Further type splitting or type creation would require to add more outcome functions
and thus make the ambiguous mechanism even less suitable for application. In situations where
complexity considerations have to be taken into account, the seller needs to understand the trade
off between the costs and benefits of creating more types. Our results allow one to determine the
benefits of larger type sets.

6.2. Preferences

6.2.1. The agent’s preferences. Throughout our analysis, we have assumed that the
agent’s valuation is (bi-)linear and that his ambiguity aversion can be captured by the Gilboa–
Schmeidler model. In this section, we comment on the role of these assumptions.

The linearity of the agent’s valuation function—risk neutrality—is crucial in the final steps
of the characterization of the optimal ambiguous mechanism (i.e. Proposition 3 relies on this
assumption). In all results up to Lemma 4 we have only exploited the increasing difference
property of the linear valuation function. That is, all those results go through for valuation
functions that exhibit increasing differences. The result that under an atomless type distribution
the principal can extract the full surplus goes through in even more general settings. If the agent’s
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preferences over allocation-transfer pairs (x,τ ) are described by the function u(x,τ,θ), where x
is a fraction of the good, then an ambiguous mechanism like the one used in Corollary 3 can be
constructed whenever the problem

max
(q(θ ),t(θ ))∈X�×R�

Ep[t(θ )]

s.t. u(q(θ ),t(θ ),θ )≥u(0,0,θ ) ∀θ ∈�,

admits a solution.26 If (q∗,t∗) solves this problem, then the ambiguous mechanism �=
{(qθ ,tθ ),θ ∈�} whose elements are defined by

qθ
θ ′ =

{
0 if θ ′ =θ

q∗(θ ′) else
tθθ ′ =

{
0 if θ ′ =θ

t∗(θ ′) else,

extracts the full surplus.
A concern regarding our assumptions on preferences might be the question to what extent our

results are driven by the way in which we model ambiguity aversion. MMEU certainly constitutes
a rather stark model of ambiguity aversion. Our analysis heavily exploits the tractability of these
preferences in the derivation of the optimal ambiguous mechanism with finite types. While we
do not know how an optimal mechanism would look like for an alternative model of ambiguity
aversion, we can say that the basic idea on which the analysis in this article builds, does generalize.
The most fundamental insight of this article is that a principal who faces an ambiguity averse
agent might be able to exploit his ambiguity aversion by offering an ambiguous mechanism. In
the following example, we show that this insight applies also in environments where the agent’s
attitude towards uncertainty is represented by a model of smooth ambiguity aversion.

Example 3. (Smooth ambiguity aversion). The setup is as in the example considered in
Section 2, except for the agent’s attitude towards ambiguity. That is, we have �={1,2,4},
p= (1/4,1/4,1/2), u(x,τ,θ )=xθ −τ .

Instead of assuming MMEU preferences on the agent’s side, here we consider the case of an
agent who is smoothly ambiguity averse in the sense of Klibanoff et al. (2005). In particular, we
assume that when faced with a (direct) ambiguous mechanism �, type θ of the agent evaluates
messages according to the following procedure. First, he calculates for each message θ̂ ∈� and
each possible probability π ∈	(�) his expected utility, i.e.

Eπ

[
u(q(θ̂ ),t(θ̂ ),θ )

]
=Eπ

[
q(θ̂ )θ −t(θ̂ )

]
.

In a second step, he evaluates the thus obtained expected utility values with the increasing and
concave function φ :R→R. Finally, the transformed utility indices are integrated with respect
to some probability measure μ over 	(�). The payoff that type θ of the agent associates with
reporting type θ̂ is

U(θ̂ ,θ )=Eμ

{
φ
(
Eπ

[
q(θ̂ )θ −t(θ̂ ))

])}
.

For the sake of concreteness, in what follows we assume that φ(x)=1−exp(−7x), i.e. φ has
the shape of a CARA function. As for μ, we assume that it is uniform over � (or the set of

26. We continue to assume that by opting out from the mechanism each type of the agent obtains the allocation-
transfer pair (0,0).
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TABLE 4
An ambiguous mechanism with R= t/2+1/4 (under truth-telling)

θ 1 2 4

(q1,t1) (0,0) (1,1) (1,t)
(q2,t2) (1,1) (0,0) (1,t)

TABLE 5
Payoffs for the ambiguous mechanism in the preceding table

θ \ θ̂ 1 2 4

1 φ(0) φ(0) φ(1−t)
2 φ(1)/2 φ(1)/2 φ(2−t)
4 φ(3)/2 φ(3)/2 φ(4−t)

degenerate distributions over �). This seems a natural assumption given that we only allow for
consistent ambiguous mechanisms. Consistency means that the designer is indifferent between
the different outcome functions of the ambiguous mechanism. Thus there is no reason for the
agent to treat the different outcome functions asymmetrically.27

Returning to our example, consider the direct ambiguous mechanism �={(q1,t1),(q2,t2)},
described in the Table 4.

It is straightforward to verify that under truth-telling the expected revenue of both outcome
functions is R= t/2+1/4. We will now solve for the largest t such that this mechanism is incentive
compatible. Table 5 shows the payoffs that each type θ obtains from the available messages θ̂ .28

Observe that as long as t ≤4 a truthful report guarantees each type a payoff that is no smaller
than the value of the outside option, φ(0). Thus, the ambiguous mechanism � is individually
rational. It is also easily seen that the two lowest type’s incentive compatibility constraints are
satisfied if t >2 (φ(0)>φ(1−t) and φ(1)/2>φ(2−t)). The highest type has no incentive to
deviate if φ(4−t)≥φ(3)/2. The largest t which satisfies this condition is approximately t =3.9.

With t =3.9 the ambiguous mechanism generates an expected revenue of R= t/2+1/4=2.2
which exceeds the revenue of the best simple mechanism by 0.2.

6.2.2. The seller’s preferences. Throughout the article, we assumed that the principal
is ambiguity-neutral. This was done mainly for ease of exposition. The optimality of the
ambiguous mechanism that emerged from Proposition 3 in the class of consistent direct ambiguous
mechanisms depends only on the seller’s risk neutrality, not on his attitude towards ambiguity.
That is, a seller who chooses the distribution over outcome functions knows this distribution and
is thus not facing any ambiguity. A similar conclusion continues to hold even if the seller were
to delegate the choice of an outcome function (or a distribution over those) to an uninterested
third party or some mechanical selection device. Ambiguity associated with the behaviour of the
third party could never assume payoff relevance as long as all outcome functions yield the same
expected revenue as is required by the consistency condition.

Notice though that the motive for imposing consistency disappears if the choice of the outcome
function (out of an ambiguous mechanism) is not made by the seller himself but is delegated to

27. While the assumption of a uniform μ over � is convenient in that it simplifies the presentation of our example,
we should point out that it is not an assumption that is necessary for our argument.

28. Remember that the agent’s belief is described by the uniform distribution over the degenerate distributions on
�.
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an uninterested third party or some mechanical ambiguity device. When the seller chooses an
outcome function (or a distribution over those), then the buyer should assume that the seller
picks the one that is best for himself. Thus, the buyer could only ever perceive the choice of the
outcome function as ambiguous if he thought that the principal was indifferent over some outcome
functions. There is no point in requiring this same indifference condition when it is not the seller
who makes the choice of the outcome function. Therefore, in the case of an ambiguity averse
seller, in principle one would have to consider also non-consistent ambiguous mechanisms (in
combination with the use of external ambiguity devices). Fortunately, if the seller is a risk neutral
maxmin expected utility maximizer, then enlarging the set of admissible ambiguous mechanisms
neither changes the value of his problem nor alters the fact that there must be an optimal ambiguous
mechanism among the consistent ones.

Without the requirement that every outcome function in an ambiguous mechanism needs to
yield the same expected revenue Problem (P) has to be replaced by the following problem:

max
R∈R,�⊂X�×R�

R (P-2)

s.t. R≤ min
(q,t)∈�

Ep[t(θ )], (C’)

(DIC),(UIC),(IR).

Note that the only difference between this problem and Problem (P) is that the constraint (C)
in the latter is replaced by the constraint (C’) in Problem (P-2). (C’) represents the fact that the
payoff of a seller who is MMEU ambiguity averse and who delegates the choice of the outcome
function that will be implemented to an external “ambiguity device” (uninterested third party),
is given by the minimum of the expected revenues that the outcome functions in his ambiguous
mechanism generate.

The following result shows that the solutions of Problem (P) that we have characterized earlier
also solve Problem (P-2).

Proposition 6. The ambiguous mechanism generated by the allocation vector Q̂ described in
Proposition 3 solves Problem (P-2). That is, it remains an optimal ambiguous mechanism when
the seller has MMEU preferences and one does not require consistency.

The intuition for this result is rather straightforward: given that the principal’s payoff is
determined by the outcome function that delivers the lowest expected revenue, he might as well
choose to start with a mechanism that contains only outcome functions that yield the same expected
revenue. Suppose we are given a mechanism � that does not satisfy this condition. Let R denote
the minimum of the expected revenues of the outcome functions in �. By appropriately lowering
the transfers of the highest type in all outcome functions who do not produce an expected revenue
of R, one can obtain a mechanism that is still downward incentive compatible and individually
rational. By applying Lemmata 1 through 3, this mechanism can be further transformed to obtain
a new mechanism that is also upward incentive compatible and generates an expected revenue
of at least R.

6.3. Surplus extraction: ambiguity aversion versus risk aversion

In Section 4.4, we have shown that with the use of ambiguous mechanisms the principal can
extract the entire surplus from the agent provided that the agent has MMEU preferences and
his type set is “large enough”. This result is related to the findings of Matthews (1983) and
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Maskin and Riley (1984) who have studied mechanism design problems with risk averse agents.
Matthews (1983) shows that if the type set is a continuum and the agent has a valuation function
that exhibits constant absolute risk aversion, then the share of the surplus that the principal can
extract from the agent increases as the agent’s coefficient of absolute risk aversion increases; in
particular, when the agent becomes infinitely risk averse, the principal can appropriate the entire
surplus.

Formally, the case of an ambiguity neutral and risk averse agent with a CARA utility function
resembles the case of an agent who is risk neutral and smoothly ambiguity averse with a CARA
transformation function φ.29 Moreover, the MMEU preferences à la Gilboa and Schmeidler
(1989) that we assume can be seen as the limit of ambiguity averse preferences that are CARA-
smooth, when the CARA coefficient tends to infinity. In the light of these observations, our full
rent extraction result for the case where the type set is a continuum, may seem to be similar to
the results in Matthews (1983).

But the analogy between risk aversion and stochastic mechanisms on the one hand and
(smooth) ambiguity aversion and ambiguous mechanisms on the other hand is not quite as close
as it appears at first sight. The central difference between the two cases lies in the fact that in the
case of stochastic mechanisms the distribution of the outcomes is determined by the designer.
That is, the distribution of the outcomes is given by an objective probabilistic distribution that
is a choice variable of the principal. There is no analogous instrument in the case of smooth
ambiguity aversion.

Even though in that model uncertainty is described by a distribution (μ) over (distributions
of) outcomes, the higher level distribution (μ)—which is the mathematical analogue of the
probability distributions over outcomes in a stochastic mechanism—does not allow for an
objective interpretation.30 In particular, one cannot think of it as a variable that the principal can
choose and can commit to in the way he chooses and commits to the distributions in a stochastic
mechanism. Instead, the higher level distribution (μ) is only a description of the uncertainty that
the agent perceives and—by the very idea that underlies the concept of uncertainty—there is no
sense in which this perception could be given an objective interpretation as can be done in a
setting with risk aversion by considering only objective probabilistic distribution of outcomes.
Thus, unlike in the case of a stochastic mechanism which fully pins down the perceptions of the
risk averse agent by specifying in an objective way all aspects of the distribution of the outcomes,
an ambiguous mechanism can always just determine the support of the distribution that describes
the agent’s perceptions.All remaining aspects of the agent’s uncertainty perception are necessarily
of a purely subjective nature.

While on the one hand the fact that the higher order distribution in the smooth ambiguity
model describes the subjective uncertainty perceptions of the agent means that it is outside the
direct control of the principal, on the other hand it also implies that it should be considered as
endogenous with respect to the principal’s choices. In particular, this endogeneity of the agent’s
perceptions would call for the use of the consistency concept in an environment with a smoothly
ambiguity averse agent for the same reasons we have adopted it in our setting with MMEU
preferences. Notice that there is no analogous constraint that has to be considered in a setting
with risk aversion and stochastic mechanisms. Thus, the conceptual differences between the two
cases also translate into important differences in their mathematical treatment.

29. By the term “transformation function” we mean the function which is applied to transform the expected utility
values. It is standard to denote this function by φ as we do in Example 3.

30. See the discussion of this issue in Klibanoff et al. (2012).
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6.4. Consistency

In the design of ambiguous mechanisms, we required that all the outcome functions yield the
same ex-ante expected profit, assuming that the buyer reports his type truthfully; we termed this
requirement consistency. Here we provide further insight into why consistency is desirable and
what would be the implications of dropping or weakening the assumption.

Suppose that there were no restrictions on the outcome functions, and suppose the seller were
to announce that the ambiguous mechanism consists of an outcome function that gives the buyer
the good with probability one at the price equal to the type he reported, and an outcome function
that never gives the object to the buyer and never charges him any money. That is, the seller
announces that he will commit to some randomization over these two outcome functions but
does not reveal the randomization he commits to. If the buyer were to entertain a belief that
contains all distributions over the two outcome functions, he could never expect to get payoff
larger than zero from any of the available reports. Since reporting truthfully would yield a payoff
exactly equal to zero doing so would indeed be optimal for him. However, foreseeing that the
seller would have a strict incentive to choose a randomization that strongly favors the outcome
function that prescribes to transfer the good to the agent at a price equal to his (trutfully) reported
type. Therefore, in a sense, the seller would be fooling the buyer, or rather, the buyer would be
fooling himself by believing that the seller might choose the outcome function that never gives
him the object with a high probability. Consistency serves to prevent this type of “incoherent”
beliefs by the buyer. For more on game theoretic concepts under ambiguity aversion see also
Azrieli and Teper (2011) and Bade (2011).

Rather than requiring that all outcome functions yield the same expected profit one could
try to slightly weaken the consistency assumption. The ideas here are easiest to explain
within an example. Suppose that there are three possible valuations of the buyer, as in the
motivating example, and suppose that the seller offers an ambiguous mechanism consisting of the
following two outcome functions: (q1,t1)={(1,1),(0,0),(1,4)}, (q2,t2)={(0,0),(1,2),(1,4)}.
This mechanism satisfies a weaker requirement that for every outcome function there exists a
type such that the seller would prefer the outcome function if the agent was of that type. In
particular, if the buyer reports truthfully, the seller prefers the first outcome function if the buyer
is the lowest type and the second outcome function if the buyer is the middle type. However,
if the buyer reports truthfully the second outcome function generates a higher expected payoff
than the first, therefore the mechanism does not satisfy the consistency condition. Since the seller
needs to commit to a randomization over the two outcome functions at the beginning, he would
strongly prefer a randomization that attaches a high probability to the second outcome function.
Therefore, this weakening of the consistency assumption results in a similar problem as dropping
the assumption altogether.31

7. CONCLUSION

In this article, we have studied mechanism design problems where the agent is ambiguity averse in
the sense of Gilboa and Schmeidler (1989). The central insight of our analysis is that the principal
can exploit the agent’s ambiguity aversion by offering ambiguous mechanisms. In fact, we find
that if the type set is “large enough” the designer can extract the entire rent from the agent.

While most of our analysis concentrates on the case of a single agent environment, we show
in Appendix B that when the type distribution is atomless our result readily generalize to settings
with multiple agents. Finally, the core insight of our article does not depend on the assumption

31. We would like to thank a referee for helping us clarify this point.
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of MMEU preferences à la Gilboa and Schmeidler (1989). In comparison to other models of
ambiguity aversion, MMEU preferences provide important advantages in terms of tractability. In
Example 3, we have seen that it is optimal for the principal to use ambiguous mechanisms also
if we adopt the less extreme smooth model of ambiguity aversion.

A. APPENDIX

Proof of Proposition 1. Optimality of σ implies

inf
(q,t)∈�

q(σ (θ ))θ −t(σ (θ ))≥ inf
(q,t)∈�

q(s)θ −t(s) ∀s∈S.

Consider the direct ambiguous mechanism �′ defined in the proposition. By the construction of �′ we have

inf
(q′,t′)∈�′ q

′(θ )θ −t′(θ )= inf
(q,t)∈�

q(σ (θ ))θ −t(σ (θ )).

Similarly,
inf

(q′,t′)∈�′ q
′(θ ′)θ −t′(θ ′)= inf

(q,t)∈�
q(s′)θ −t(s′)

for s′ =σ (θ ′). Combining these three observations yields

inf
(q′,t′)∈�′ q

′(θ )θ −t′(θ )≥ inf
(q′,t′)∈�

q′(θ ′)θ −t′(θ ′) ∀θ ′ ∈�,

and so we can conclude that �′ is incentive compatible.
That �′ is consistent with respect to thruthtelling follows immediately from the fact that � is consistent with respect

to σ . ‖
Proof of Lemma 1. Let � be a mechanism that satisfies (C), (DIC), and (IR). Let �1 be the set of all simple mechanisms
of the form (q,t′), where (q,t)∈�, t′n = tn for all 1<n<N , and

t′1 =q1θ1 and t′N = tN − p1

pN
[t′1 −t1].

Since � satisfies (IR), t′1 ≥ t1 and t′N ≤ tN . Thus, in passing from t to t′, the transfer of type θ1 is increased until his
truth-telling payoff is zero, while that of θN is lowered so that t and t′ have the same expected value. Since � satisfies (C)
so does �1; in particular, R(�)=R(�1). By construction �1 satisfies the individual rationality constraint of the lowest
type with equality. Moreover, it is also downward incentive compatible. To see this observe that the truth-telling payoffs
of all types θn, 1<n<N , are the same under � and �1. The highest type’s truth-telling payoff instead is (weakly) larger
in �1 than in �. Regarding the payoffs from downward deviations, observe that the only downward deviation report
which may deliver different payoffs in � than �1 is θ1. But whenever that is the case it is lower in �1 than in �. Given
that the truth-telling payoffs of types who have downward deviation opportunities are at most higher in �1 than in �, it
follows that �1 must indeed satisfy (DIC) given that � does.

�1 constitutes the base case for our inductive argument. We next show the inductive step. Suppose we have defined
the mechanisms �1,...,�n−1 for some 1<n≤N −1. Proceeding in similar fashion as before, we define �n as the set
of all simple mechanisms of the form (q,t′), where (q,t)∈�n−1, and the transfer rule t′ coincides with t except for the
transfers of types θn and θN , which are

t′n =qnθn − max
1≤m<n

inf
(q̃,t̃)∈�n−1

q̃mθn − t̃m and t′N = tN − pn

pN
[t′n −tn].

Since �n−1 satisfies (DIC), it follows that t′n ≥ tn and t′N ≤ tN . The above transformation increases the transfer to be paid
upon reporting type θn in all outcome functions until type θn’s truth-telling payoff from each outcome function becomes
equal to the payoff from his most attractive downward deviation. As before, �n inherits the properties (C), (DIC), and
(IR) from �n−1; moreover, by construction R(�n)=R(�n−1).

Finally, define �N as the set of all outcome functions of the form (q,t′), where (q,t)∈�N−1 and the transfers t′
coincide with t except for the transfers of the highest type which are set equal to

t′N = tN + inf
(q̃,t̃)∈�N−1

{q̃NθN − t̃N }− max
1≤m<N

inf
(q̃,t̃)∈�N−1

{q̃mθN − t̃m }.

Since �N−1 is downward incentive compatible it follows that the difference

inf
(q̃,t̃)∈�N−1

{q̃NθN − t̃N }− max
1≤m<N

inf
(q̃,t̃)∈�N−1

{q̃mθN − t̃m }

is non-negative. This means that in passing from �N−1 to �N the transfers of the highest type are increased by the same
amount in all outcome functions. Thus, property (C) is preserved and R(�N )≥R(�N−1).
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In the first step, we have shown that the transfers of the lowest type can be increased so that each outcome function
gives payoff zero to the lowest type when he reports truthfully. The inductive step then takes an ambiguous mechanism
in which the downward incentive compatibility with respect to types θ1 through θn−1 are binding and shows that one
can increase the transfers of type θn and decrease the transfers of the type θN so that also type θn’s downward incentive
compatibility constraint becomes binding and the expected transfer of each of the outcome functions does not change. In
the last step, the transfers tN in all outcome functions are uniformly increased until θN ’s downward incentive compatibility
constraint becomes binding. �N is, therefore, an ambiguous mechanism that satisfies all conditions of (Uni). Thus, setting
�′ =�N proves the lemma. ‖
Proof of Lemma 2. Let � be an ambiguous mechanism that satisfies (C) and (Uni). Denote its closure (in the usual
Euclidean sense) by �̄. Clearly, �̄ inherits the properties (C) and (Uni) from �. Moreover, R(�̄)=R(�). For each
1≤m<N , let �m be the set of outcome functions in �̄ that minimize the probability of the allocation for the report θm:

�m ={(q,t)∈�̄ :qm ≤q′
m for all (q′,t′)∈�̄}. (6)

Let m<n≤N . Since θn >θm, an outcome function (q,t)∈�̄ belongs to �m if and only if (qm −q′
m)(θn −θm)≤0 for

all (q′,t′)∈�. By (Uni), qmθm −tm =q′
mθm −t′m, hence the above inequality can be written as qmθn −tm ≤q′

mθn −t′m. It
follows that �m is also the set of outcome functions that minimizes the payoff of any type θn >θm when he untruthfully
reports θm, that is, for all m<n≤N

�m ={(q,t)∈�̄ :qmθn −tm ≤q′
mθn −t′m for all (q′,t′)∈�̄}. (7)

Define a mechanism �̂ by letting (qm,tm) be an arbitrarily chosen element from �m, for m=1,...,N −1. Since, �̂ is
composed of simple mechanisms that were picked from �̄, it immediately follows that �̂ satisfies (C) and R(�̂)=R(�̄).
Moreover, uniformity of �̄ implies that the truth-telling payoffs in �̂ must be the same as in �̄, except for possibly the truth-
telling payoff of the type θN . For type θN uniformity of �̄ requires merely that there is some outcome function in �̄ for which
the truth-telling payoff is the same as the highest payoff the agent obtains in the ambiguous mechanism from misreporting
downwards. �̂ is obtained from �̄ by pruning some outcome functions. The deletion of outcome functions may lead to an
increase of the payoff of type θN , i.e. it is possible that min(q,t)∈�̂

qNθN −tN >min(q′,t′)∈�̄q′
NθN −t′N . In this case we must

also have qNθN −tN >max1≤m<N min(q′,t′)∈�̂
{q′

mθN −t′m} for all (q,t)∈�̂, since the downward deviation payoffs in �̂ and

�̄ coincide; i.e. �̂ may violate the third condition of (Uni). To deal with this, we construct a new ambiguous mechanisms �′
from �̂by uniformly increasing transfers tm

N , for m=1,...,N −1, by	=qNθN −tN −max1≤m<N min(q′,t′)∈�̂
{q′

mθN −t′m}≥
0. The fact that all outcome functions in �̂ yield the same expected payoff for the seller, R, implies that all outcome
functions in �′ yield the expected payoff R′ =R+	≥R; i.e. �′ satisfies (C). Finally, since �′ and �̂ differ at most in the
transfers of the highest type, the downward deviation payoffs under �′ and �̂ coincide; the same holds true also for the
truth-telling payoffs of types θn, n=1,...,N −1. �̂ in turn is composed exactly of those elements of �̄ which define the
downward deviation payoffs in �̄. Moreover, as we observed before �̂ inherits from �̄ also the truth-telling payoffs of all
but possibly the highest type. The fact that �̄ satisfies (Uni) therefore implies that �′ must satisfy the first two conditions
in the definition of (Uni). Since it has been constructed to satisfy also the third condition of (Uni), we conclude that �′
satisfies (Uni). Also the property (Min) is obtained by construction. ‖
Proof of Lemma 3. Let �={(q1,t1),...,(qN−1,tN−1)} be a mechanism satisfying (C), (Uni), and (Min).

We first show that � may be changed so that it satisfies the first part of (Mon) while still satisfying (C), (Uni),
and (Min). Consider the mechanism �̄={(q̄1,t1),...,(q̄N−1,tN−1)}, where for each 1≤m<N the allocation rule q̄m is
defined as follows. For every 1≤n≤N , q̄m

n =qm
n if n=m and q̄m

n =1 otherwise. By construction, �̄ satisfies the first part
of (Mon). Moreover, �̄ has the same transfer rules as �. Given that the latter satisfies (C) so must �̄. For the same reason
we also have R(�̄)=R(�). Next, observe that the downward deviation payoffs in � and �̄ are the same. Clearly, these
payoffs cannot decrease due to the increase in the allocations that occurs when passing from � to �̄ (transfers do not
change). That they cannot increase follows from the construction of �̄ and the fact that � satisfies (Min). Taken together
these properties imply that for all 1≤m<n≤N we have

min
1≤�<N

{q�
mθn −t�n}=qm

mθn −tm
m = q̄m

mθn −tm
m = min

1≤�<N
{q̄�

mθn −t�n}. (8)

Since also the truth-telling payoffs can at most increase, it follows that �̄ inherits from � the properties (DIC) and (IR).
Applying Lemma 1 to �̄ delivers an ambiguous mechanism �̃={(q̃1, t̃1),...,(q̃N−1, t̃N−1)} that satisfies (Uni). Since this
last step does not involve any changes in the allocation rules it follows that �̃ satisfies the first part of (Mon), so that
for all 1≤m≤N −1 we have q̃m

m ≤ q̃�
m for all 1≤�≤N −1. In the proof of Lemma 2, we have seen that this implies that

(q̃m, t̃m) is the outcome function that defines the payoff from downward deviations towards θm. We can therefore conclude
that �̃ satisfies (Min) as well.

We now come to the second part of (Mon). Let �={(q1,t1),...,(qN−1,tN−1)} be a mechanism satisfying (C), (Uni),
(Min), and the first part of (Mon). Observe first that if for 1≤m<m′ <N we have qm

m ≤qm′
m′ then for every type θn, n>m′,
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a deviation to θm can never be more attractive than a deviation to θm′ . In order to see this, remember that (Uni) implies
(DIC) and so type θm′ must be better off by reporting truthfully than by reporting θm:

qm
mθm′ −tm

m ≤qm′
m′ θm′ −tm′

m′ . (9)

Then

tm′
m′ −tm

m ≤qm′
m′ θm′ −qm

mθm′ ≤ (qm′
m′ −qm

m)θn

for m′ <n≤N . Therefore

qm
mθn −tm

m ≤qm′
m′ θn −tm′

m′ for all m′ <n≤N . (10)

Now assume that � does not satisfy the second part of (Mon), and let m′ be the smallest 1≤m<N for which the condition
is violated. Thus,

qm′
m′ <qm′−1

m′−1 and qm
m ≥qm−1

m−1 ∀ 1<m<m′. (11)

By our previous observation for every type θn, n>m′ −1 the most attractive deviation in the set {θ1,...,θm′−1} is θm′−1.
Since � is uniform this means that the payoff of type θm′ from reporting truthfully and from reporting θm′−1 is the same,
i.e.

qm′−1
m′−1θm′ −tm′−1

m′−1 =qm′
m′ θm′ −tm′

m′ . (12)

But if type θm′ is indifferent between the reports θm′ ant θm′−1, then for each n>m′, type θn must strictly prefer reporting
θm′−1 over reporting θm. Indeed, (12) implies

qm′−1
m′−1θn −tm′−1

m′−1 >qm′
m′ θn −tm′

m′ for all m′ <n≤N . (13)

Thus, the downward deviation constraint with respect to θm′
m′ cannot be binding for any type θn, n>m′.

Consider now the mechanism �̄={(q̄1, t̄1),...,(q̄N−1, t̄N−1)} that coincides with � except for the values of q̄m′
m′ , t̄m′

m′
and t̄m′

N . q̄m′
m′ is increased to qm′−1

m′−1, t̄m′
m′ is increased so that the payoff that type θm′ gets under the outcome function (q̄m′

, t̄m′
)

when reporting truthfully is the same one that he gets under the outcome function (qm′
,tm′

), i.e.

q̄m′
m′ θm′ − t̄m′

m′ =qm′
m′ θm′ −tm′

m′ .

Finally, t̄m′
N is chosen such that the expected values of t̄m′

and tm′
coincide, i.e.

t̄m′
N = tm′

N − pm′
pN

[
t̄m′
m′ −tm′

m′
]
.

Since t̄m′
m ≥ tm′

m , it follows that t̄m′
N ≤ tm′

N . Notice that in passing from � to �̄ only the consequences of reporting θm′ and θN

under outcome function (qm′
,tm′

) are affected. We will argue now that �̄ satisfies all desired properties except possibly
the third condition in (Uni) (a binding downward deviation incentive constraint of type θN ). Transfers have been modified
in a way such that the expected value of tm′

remains unchanged. Thus �̄ satisfies (C) with R(�̄)=R(�).
The truth-telling payoff of type θm′ under (q̄m′

, t̄m′
) does not change with respect to (qm′

,tm′
). Thus, also in �̄ type

θm′ gets the same truth-telling payoff from all outcome functions. From Lemma 2 we know that in combination with
q̄m′

m′ ≤ q̄�
m′ , 1≤�≤N −1, this implies that (q̄m′

, t̄m′
) defines the payoff from downward deviations towards θm′ by types θn,

n>m′. Since no other downward deviation payoffs could be affected when passing from � to �̄, we can conclude that
the latter must satisfy (Min).

The payoffs from downward deviations towards θm′ increase, but they cannot exceed those from deviations towards
θm′−1. To see this, notice that since � satisfies (Uni) we have

q̄m′
m′ θm′ − t̄m′

m′ =qm′
m′ θm′ −tm′

m′ =qm′−1
m′−1θm′ −tm′−1

m′−1 = q̄m′−1
m′−1θm′ − t̄m′−1

m′−1 .

Combining this with qm′
m′ = q̄m′−1

m′−1 we get t̄m′
m′ = t̄m′−1

m′−1 . Thus, the payoff that any type can get from report θm′ under outcome

function (q̄m′
, t̄m′

) coincides with the payoff that he gets from report θm′−1 under outcome function (q̄m′−1, t̄m′−1). Since,
the latter defines the payoffs from downward deviations to θm′−1 the claim follows. We can therefore conclude that �̄

satisfies the first two conditions in (Uni).
As for the third requirement of (Uni) (a binding incentive constraint for downward deviations by the highest type)

observe that the truth-telling payoff of type θN may increase since tm′
N decreases. If this is not the case, then �̄ satisfies

all conditions of (Uni) and so we are done by setting �′ =�̄.
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If instead the highest type’s truth-telling payoff is higher in �̄ than in �, then consider the mechanism �′ which
coincides with �̄ everywhere except for the transfers of the highest type. The latter are chosen as follows: for each
1≤m<N , set t

′m
N = t̄m

N +ε, where ε is given by

ε= min
1≤�<N

{q̄�
NθN − t̄�N }− max

1≤m<N
min

1≤�<N
{q̄�

mθm − t̄�m}.

Since in passing from �̄ to �′ the highest type’s transfer is increased uniformly across all outcome functions it follows that
�′ satisfies (C) with R(�′)>R(�). Moreover, the fact that by the switch from �̄ to �′ only the transfers for the highest
type are affected, implies that �′ inherits both (Min) and the first two parts of (Uni) from �̄. Finally, in �′ the transfers
of the highest are chosen exactly such that the highest type’s downward deviation constraint is binding. Consequently,
�′ satisfies all parts of (Uni) and so the proof is complete. ‖
Proof of Lemma 4. Let � be a mechanism that satisfies (Uni), (Min), and (Mon). Let N >n>m≥1. Then

min
(q,t)∈�

{qnθm −tn} ≤ qn
nθm −tn

n

= qn
n(θm −θn)+qn

nθn −tn
n =qn

n(θm −θn)+qn−1
n−1θn −tn−1

n−1

= qn
n(θm −θn)+qn−1

n−1(θn −θn−1)+qn−1
n−1θn−1 −tn−1

n−1

.

.

.
.
.
.

= qn
n(θm −θn)+qn−1

n−1(θn −θn−1)+ ...+qm
m(θm+1 −θm)+qm

mθm −tm
m

= qm
mθm −tm

m −
n−m−1∑

k=0

(qn−k
n−k −qn−k−1

n−k−1)(θn−k −θm)

≤ qm
mθm −tm

m

= min
(q,t)∈�

{qmθm −tm}.

The first inequality is definitional, the second inequality follows from the fact that qn
n is non-decreasing in n and the last

equality is implied by (Uni). The equalities between the two inequalities follow from the fact that for each 1<n≤N ,
the binding downward incentive constraint of type θn, is the one with respect to the adjacent lower type θn−1. This has
been shown in the proof of Lemma 3, where we have seen that in a uniform ambiguous mechanism (one of) the binding
incentive constraint for downward deviations for type θn, 1<n<N , is the one with respect to type θmn , where

mn ∈arg max
1≤m<n

{
min

1≤�<N
{q�

m}
}

.

For a mechanism that is also minimal and monotonic it thus follows that mn =n−1.
In the preceding argument we do not allow for n=N . The reason for this is purely notational. A perfectly analogous

argument can be applied in the case n=N by using in the first row instead of (qn,tn) the mechanism that minimizes the
truth-telling payoff of the highest type. ‖
Proof of Proposition 2. By Lemma (4) we know that every mechanism that is feasible in Problem (P’) also satisfies
(UIC). It also satisfies (DIC) and (IR) because it satisfies (Uni); see the paragraph after Definition 4. Therefore, every
such mechanism is feasible in Problem (P-2) and thus the value of Problem (P) cannot be smaller than the value of
Problem (P’).

On the other hand, Lemmata 1 through 3 imply that for every mechanism that is feasible in Problem (P) there exists
a mechanism with at least as high an expected revenue for the seller, that is feasible in Problem (P’). But then the value
of Problem P’ must be at least as large as the value of Problem (P’). ‖
Proof of Lemma 5. If � satisfies (Uni), (Min), and (Mon), then for each 1<n≤N the binding downward incentive
constraint of type θn is the one with respect to θn−1 (see the proof of Lemma 3). Thus,

tm
1 =qm

1 θ1 for all 1≤m<N, (14)

tm
n+1 = (qm

n+1 −qn
n)θn+1 +tn

n for all 1≤n≤N −2 and 1≤m<N,

tm
N ≤ (1−qN−1

N−1)θN +tN−1
N−1 , for all 1≤m<N .

From this it is straightforward to derive (3) and (4) by recursively substituting the expressions tn
n into the formula for

tm
n+1.
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Conversely, suppose we are given a minimal and monotonic mechanism � the transfers of which satisfy (3) and (4).
It is then easily verified that for each 1≤n<N the truth-telling payoffs of type θn are constant across outcome functions.
This in turn implies that the payoff type θn, n≤N , obtains from a deviation to θm, 1≤m<n, is determined by the outcome
function (qm,tm) (since this is the outcome function that minimizes the allocation probability after report θm). Using this
it is straightforward to show that the payoff of type θn from deviating to θm, m<n is increasing in m and is equal to the
truthtelling payoff for m=n−1. With other words, type θn’s downward adjacent IC constraint is binding.

In order to see this, consider the difference in the payoff of type θn from reporting θm and θm−1, m≤n.

min
1≤l<N

{ql
mθn −tl

m}− min
1≤l<N

{ql
m−1θn −tl

m−1}=qm
mθn −tm

m −qm−1
m−1θn −tm−1

m−1 (15)

=qm
mθn −qm

mθm +
m−1∑
k=1

qk
k (θk+1 −θk)−qm−1

m−1θn +qm−1
m−1θm−1 −

m−2∑
k=1

qk
k (θk+1 −θk) (16)

= (θn −θm)(qm
m −qm−1

m−1)≥0. (17)

Given that qm
m ≥qm−1

m−1 this difference is non-negative. Moreover, it becomes zero for m=n. Hence, � satisfies all downward
incentive constraints and the one with respect to the adjacent lower type is binding. Combining all these observations we
can conclude that � satisfies (Uni). ‖

Starting with Lemma 6 all results from Section 4.3 are stated using Assumption 1. Since the only role of Assumption
1 was to simplify the exposition in the main text in what follows we state and prove versions of the results that do not
rely on this assumption. In order to do so we introduce some further notation. First, we inductively construct the set
M={m1,...,mM ,mM+1}, which is a subset of the index set N . The first element, m1, is set equal to 1. If for mj−1 the set
{n :N >n>mj−1,pnθn >pmj−1 θmj−1 } is non-empty, we set mj =min{n :N >n>mj−1,pnθn >pmj−1 θmj−1 }. Let mM be the
largest index defined in this way and set mM+1 =N . Observe that if pnθn is increasing in n, then M coincides with the
set N . Also notice that pmj θmj is monotonic in j=1,...,M by construction.

Next we generalize the definition of the adjusted virtual valuations. For every 1≤ j≤M define ν̄mj as follows:

ν̄mj =pmj θmj −
M∑

s=j

pmj θmj

pms θms

ms+1−1∑
i=ms

(1−Pi)(θi+1 −θi).

With this adapted definition of adjusted virtual valuations Lemma 6 can be restated as follows:

Lemma 7. If ν̄mj ≤0 for 1< j≤M, then ν̄mk ≤0 for all 1≤k < j.

Proof of Lemma 7. In order to see this, we rewrite the virtual valuation ν̄mj in the form

ν̄mj =pmj θmj

⎡
⎣1−

M∑
s=j

1

pms θms

ms+1−1∑
i=ms

(1−Pi)(θi+1 −θi)

⎤
⎦.

The sign of ν̄mj is determined by the expression in the square brackets. It is easy to verify that this term is increasing in
j. Thus, if it is negative for a given 1< j≤M then it must be so also for all 1≤k < j. ‖

The main result of Section 4.3, Proposition 3, can be generalized as follows:

Proposition 7. The following holds:

(i) If ν̄1 >0, then (q̂1
1,...,q̂

N−1
N−1)= (1,...,1) solves Problem (P”).

(ii) If ν̄1 ≤0, let j∗ =max{j : ν̄mj ≤0} and let Q̂= (q̂1
1,...,q̂

N−1
N−1) be defined by

q̂n
n =

⎧⎨
⎩

0 if n<mj∗+1

1− pmj∗ θmj∗
pmj θmj

if j∗ +1≤ j≤M and mj ≤n<mj+1.

Q̂ constitutes a solution of P”.

Proof Proposition 7. We proceed in several steps. In the first step, we show that the problem of choosing (q1
1,...,q

N−1
N−1)

can be reduced to a problem where only (qm1
m1 ,...,q

mM
mM ) are chosen.

Step 1. If mj <n<mj+1, 1≤ j≤M, then at the optimum q̂n
n = q̂

mj
mj .
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In order to see this observe that since for every Q with non-decreasing components, we have qn
n ≥q

mj
mj it follows that

R̄n(Q)−R̄mj (Q)=−pnθn(1−qn
n)+pmj θmj (1−q

mj
mj )≥ (1−q

mj
mj )(pmj θmj −pnθn)≥0.

That is, there is no admissible Q for which R̄n(Q) is the (strictly) smallest upper bound on the revenues. But R̄n(Q) is
the only bound that could be increasing in qn

n . Thus, it is without loss to choose qn
n as small as possible, i.e. we can set

q̂n
n = q̂n−1

n−1. Since this argument applies to all mj <n<mj+1 we can conclude that choosing q̂n
n = q̂

mj
mj for all mj <n<mj+1

is optimal.

Step 2. At the optimum

q̂
mj+1
mj+1 ≤1− pmj θmj

pmj+1 θmj+1

(1− q̂
mj
mj )

for all 1≤ j≤M −1.
In order to see this, notice that for every Q such that

q
mj+1
mj+1 >1− pmj θmj

pmj+1 θmj+1

(1−q
mj
mj )

we have
R̄mj+1 (Q)−R̄mj (Q)>0.

Moreover, rewriting the inequality yields

q
mj+1
mj+1 −q

mj
mj >

(
1− pmj θmj

pmj+1 θmj+1

)
(1−q

mj
mj )≥0.

In such a case we can lower q
mj+1
mj+1 without violating the constraint q

mj+1
mj+1 ≥q

mj
mj , and thus increase all R̄n, n �=mj+1. Since

R̄mj+1 is not the smallest bound this means that the minimum of the bounds would increase. But then Q cannot be optimal.

Step 3. If ν̄1 ≤0 then at the optimum

q̂
mj
mj =1− pmj−1 θmj−1

pmj θmj

(1− q̂
mj−1
mj−1 ) for all j∗ < j≤M;

if ν̄1 >0 then this condition holds for all 1< j≤M.
By Step 2 we know that at the optimum

q̂
mj
mj ≤1− pmj−1 θmj−1

pmj θmj

(1− q̂
mj−1
mj−1 ),

for all 1< j≤M or equivalently
R̄mj (Q̂)≤ R̄mj−1 (Q̂).

Now suppose that Q̂ is such that this condition holds with strict inequality for j=M, implying qmM
mM <1. Then, R̄mM (Q̂)

is strictly smaller than any other bound. If Q̂ is optimal then it should not be possible to increase R̄mM . An increase of
R̄mM can be achieved only if qmM

mM is increased. On the other hand, since for all mM <n<N we have q̂n
n = q̂mM

mM , qmM
mM can

be increased without violating monotonicity only if at the same time we also increase qn
n for mM <n<N . The impact of

a uniform increase of (qmM
mM ,...,qN−1

N−1) on R̄mM is

pmM θmM −
N−1∑

i=mM

(1−Pi)(θi+1 −θi)= ν̄mM .

Thus Q̂ cannot be optimal if ν̄mM >0. This proves the claim for j=M > j∗.
For the case that j lies strictly between j∗ and M (i.e. j∗ < j<M) assume that we have shown the claim for s=

j+1,...,M. If Q̂ is such that

q̂
mj
mj <1− pmj−1 θmj−1

pmj θmj

(1− q̂
mj−1
mj−1 )

then

R̄mM (Q̂)= ...= R̄mj+1 (Q̂)= R̄mj (Q̂)< R̄mj−1 (Q̂)≤ ...≤ R̄m1 (Q̂).

The assumption that the claim holds for s= j+1,...,M implies that

qms
ms

= 1− pms−1 θms−1

pms θms

(1−q
ms−1
ms−1 )=1− pms−1 θms−1

pms θms

[
1−

(
1− pms−2 θms−2

pms−1 θms−1

(1−q
ms−2
ms−2 )

)]

= pms−2 θms−2

pms θms

(1−q
ms−2
ms−2 )= ...

= 1− pmj θmj

pms θms

(1−q
mj
mj ).
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Moreover, by Step 1 we know that for ms−1 <n<ms, s= j+1,...,M,

qn
n =q

ms−1
ms−1 .

Thus, if starting from Q̂ we want to increase q
mj
mj , then monotonicity combined with the fact that the claim holds for all

s= j+1,...,M implies that we must increase qn
n , ms−1 ≤n<ms, s= j+1,...,M, at the rate

pmj θmj

pms−1 θms−1

.

If (q
mj
mj ,...,q

N−1
N−1) is increased in this way then R̄mj changes at the rate

pmj θmj −
M∑

s=j

pmj θmj

pms θms

ms+1−1∑
i=ms

(1−Pi)(θi+1 −θi)= ν̄mj .

Thus, if ν̄mj >0, then Q̂ cannot be optimal.

Step 4. If ν̄1 ≤0 then at the optimum q̂
mj
mj =0 for all j≤ j∗.

Consider first the case j= j∗. From Step 3 we know that for all s= j∗ +1,...,M the condition

q̂ms
ms

=1− pmj∗ θmj∗
pms θms

(1− q̂
mj∗
mj∗ ) (18)

holds. Thus, varying q
mj∗
mj∗ implies that we have to change accordingly also all qn

n , mj∗ <n<N . In the previous step, we

have seen that the overall effect that such a change has on R̄mj∗ is measured by ν̄mj∗ . Therefore, since ν̄mj∗ ≤0, R̄mj∗ is

maximized by choosing q
mj∗
mj∗ as small as possible. But that means that we have to set q

mj∗
mj∗ =q

mj∗−1
mj∗−1 .

Next, consider the choice of q
mj∗−1
mj∗−1 . If q

mj∗
mj∗ =q

mj∗−1
mj∗−1 , then

R̄mj∗ (Q)−R̄mj∗−1 (Q)= (1−q
mj∗−1
mj∗−1 )(pmj∗−1 θmj∗−1 −pm∗

j
θm∗

j
). (19)

If q
mj∗−1
mj∗−1 <1 this expression is strictly negative, meaning that R̄mj∗−1 is not the smallest one of the bounds. Since all

other bounds are strictly decreasing in q
mj∗−1
mj∗−1 , so must be minj R̄mj . Hence, q

mj∗−1
mj∗−1 must be chosen as small as possible.

If q
mj∗
mj∗ =q

mj∗−1
mj∗−1 =1, then R̄mj∗−1 can be increased by a decrease of q

mj∗−1
mj∗−1 that is accompanied with a reduction of all qn

n ,
mj∗−1 <n<N , in accordance with (18). In order to see this notice that by (19) we know that in the initial situation we
have R̄mj∗ = R̄mj∗−1 . After the proposed reduction of all qn

n , mj∗−1 ≤n<N instead we have R̄mj∗ < R̄mj∗−1 . By our previous

arguments we know that a reduction of (q
mj∗
mj∗ ,...,qN−1

N−1) in accordance with (18) leads to an increase of R̄mj∗ and minj R̄mj .

If in addition also (q
mj∗−1
mj∗−1 ,...,q

mj∗ −1
mj∗ −1) is reduced then certainly R̄mj , j �= j∗ −1, increase further. Moreover, since after the

change R̄mj∗ < R̄mj∗−1 it must be the case that also R̄mj∗−1 increases. Combining these arguments we conclude that q
mj∗−1
mj∗−1

must be chosen as small as possible, i.e. q
mj∗−1
mj∗−1 =q

mj∗−2
mj∗−2 .

Iterating on the same argument we can show that for all mj ≤mj∗ , q
mj
mj must be chosen as small as possible. Since for

m1 this means qm1
m1 =0 we thus get q

mj
mj =0 for all mj ≤mj∗ .

step 5. If ν̄1 >0, then at the optimum q
mj
mj =1 for all 1≤ j≤M.

In Step 3 we have seen that if ν̄mj >0 for all j∗ < j≤M then each q
mj
mj has to be chosen as large as the constraint

q̂
mj
mj ≤1− pmj−1 θmj−1

pmj θmj

(1− q̂
mj−1
mj−1 ) (20)

allows. Since there is no such constraint for j=1 it follows that qm1
m1 must be optimally set equal to 1. Monotonicity then

requires that also qn
n , 1<n<N −1, must be equal to 1.

Proof of Proposition 4. In the text we explained what happens when an offer for θ1 is the optimal simple mechanism.
Here we assume it is not. An optimal simple mechanism (q̃, t̃) is then an offer at a price equal to one of the types above θ1,
that is, there is a n̄>1 such that q̃n =0 for all n< n̄ and q̃n =1 for all n≥ n̄. We will show that for each such mechanism
one can find an ambiguous mechanism that generates a strictly larger expected revenue to the seller.

Fix an optimal simple mechanism (q̃, t̃) as described above, and define the ambiguous mechanism �(n̄,q)=
{(q1,t1),...,(qN−1,tN−1)} as follows

qm
n =

⎧⎨
⎩

0 if n=m and n< n̄
q if n=m and n≥ n̄
1 else,

tm
n =

⎧⎨
⎩

qm
n θn̄ if n=m

θn if n �=m and n< n̄
(1−q)θn +qθn̄ if n �=m and n≥ n̄,

where q∈[0,1]. Notice that there is nothing in the definition of �(n̄,q) that guarantees consistency. We will deal with
that condition in a second step.
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Next we show now that there exists a value q̄ such that under truth-telling each of the outcome functions of �(n̄,q̄)
generates an expected revenue that strictly exceeds the expected revenue achieved by an optimal simple mechanism. To
see this, notice that under truth-telling the m-th outcome function of �(n̄,q) yields an expected revenue

Rm(�(n̄,q))=
{∑

n<n̄,n �=m pnθn +∑n≥n̄ pn[(1−q)θn +qθn̄] if m< n̄,∑
n<n̄ pnθn +pmqθn̄ +∑n≥n̄,n �=m pn[(1−q)θn +qθn̄] else.

(21)

The revenue of the TOL offer for θn̄ (an optimal simple mechanism) is

R̃=θn̄

∑
n≥n̄

pn. (22)

Comparing the expressions (21) and (22) reveals that for all m< n̄ the former is strictly larger than the latter for all
q∈ (0,1). As for the case m≥ n̄ observe that

Rm(�(n̄,q))−R̃=
∑
n<n̄

pnθn −pm(1−q)θn̄ +
∑

n≥n̄,n �=m

pn(1−q)(θn −θn̄).

Since
∑

n<n̄ pnθn >0 this difference must be strictly positive for q close to 1. Thus, when q is close enough to 1

Rm(�(n̄,q))> R̃

for all m. Fix a q<1 that satisfies this inequality and label it q̄. We next modify �(n̄,q̄) such that it satisfies consistency
while still achieving an expected revenue equal to

min
m′ Rm′

(�(n̄,q̄))> R̃.

To do so define
	m =Rm(�(n̄,q̄))−min

m′ Rm′
(�(n̄,q̄))

and manipulate the transfers of the highest type in all outcome functions of �(n̄,q̄) by subtracting 	m, i.e. set

t̄m
N = tm

N −	m.

Denote the ambiguous mechanism obtained after the change in the highest type’s transfers by �̄(n̄,q̄).
By construction all outcome functions of �̄(n̄,q̄) yield the same expected revenue and this expected revenue is strictly

larger than the revenue of the optimal simple mechanism. It is straightforward to verify that �̄(n̄,q̄) is constructed in
such way that it satisfies the properties (Uni), (Min), and (Mon). Lemma 4 therefore implies that �̄(n̄,q̄) is incentive
compatible. Thus, �̄(n̄,q̄) is a Problem-P’-feasible mechanism that produces a larger expected revenue than the best
simple mechanism.

In order to complete the proof we need to argue that Q= (1,...,1) not being a solution of P” is equivalent to ν̄1 <0.
Proposition 3 implies that when ν̄1 >0, Q= (1,...,1) is a solution to P”. On the other hand, step 4 of the proof of
Proposition 3 states that if ν̄1 ≤0, then at the optimum q̂

mj
mj =0 for all j≤ j∗. It is easy to see from the proof that when

ν̄1 <0, Q= (1,...,1) cannot be a solution to P”. However, when ν̄1 =0, there can be other solutions beside the one in the
statement of Proposition 3. In that case R̄1(Q), as used in the proof, is constant when one varies q1

1 and adjusts the other

q
mj
mj as in the said proof. Thus setting Q to (1,...,1) does not affect R̄1(Q) and provides an upper bound on the expected

profit for the seller. In addition, for Q= (1,...,1), R̄mj is constant in mj , and in particular equal to θ1. Therefore the upper
bound is attained, and Q= (1,...,1) is also a solution. To conclude, Q= (1,...,1) is not a solution to P” if and only if
ν̄1 <0. ‖
Proof of Proposition 6. Consider the relaxed versions of Problem (P-2) from which (UIC) has been dropped. Suppose
that � is a feasible mechanism of that problem and that (q̄, t̄) is one of the simple mechanisms in � that generates the
smallest expected revenue, i.e. (q̄, t̄)∈argmin(q,t)∈�Ep[t(θ )].

Let �′ be the set of all outcome functions of the form (q,t′), where (q,t)∈� and the transfer rule t′ coincides with t
except for the transfers of the highest type, which are equal to

t′N = tN −[Ep[t(θ )]−Ep[t̄(θ )]]/pN .

�′ inherits from � the properties (IR) and (DIC). This follows from the fact that in passing from � to �′ only the
highest type’s transfers are lowered. Thus, both individual rationality and downward incentive compatibility can at most
be relaxed. Moreover, by construction we have that

Ep[t(θ )]=Ep[t̄(θ )] for all (q,t)∈�′.

Thus, �′ satisfies (C) and generates the same value as �. But that means that the value of the relaxed version of Problem
(P-2) does not change if the constraint (C’) is replaced by (C). Doing so yields the relaxed version of Problem (P). We
already know that the latter has the same value as Problem (P) itself. ‖
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Proof of Proposition 8. Consistency follows from the fact that any two simple mechanisms in � differ only on a set of
types with zero probability. Notice also that every simple mechanism almost always awards the object to the agent with
the higher announced type at a price that is equal to the announced type. Thus, under truth-telling each simple mechanism
in � generates a revenue of T =E[max{θ1,θ2}].

As for individual rationality observe that the ambiguous mechanism never specifies a payment for an agent unless he
receives the object. When an agent receives the object, then he has to make a payment that corresponds to his announced
valuation. Thus, truth-telling always guarantees a non-negative payoff.

Finally, we have to argue that under � truth-telling is an optimal strategy for the two agents, irrespective of what
they believe about the other agent’s type or play. In order to see this, notice that for every profile of announced types, θ̂ ,
agent i knows that there are simple mechanisms in � (all those indexed by a type profile, θ , such that θ̂ i =θ i) that specify
that he will not receive the object and that he will not have to pay anything. This means that for every θ̂ his payoff is at
most zero. On the other hand, by revealing his type truthfully, agent i can never get a strictly negative payoff since every
outcome function specifies for every pair of reported types one of two possible outcomes for agent i: either he gets the
object with probability one and pays the reported valuation or he does not get the object and pays zero; in either case the
resulting payoff is zero. ‖

B. APPENDIX

In the main text, we have restricted our attention to optimal mechanism design problems in single agent environments.
In this section, we show how the full surplus extraction result of Corollary 3 can be extended to a setting with multiple
agents.32 More specifically, in what follows we consider a setting with two agents whose types are drawn from an atomless
distribution. The assumption of two agents is made for notational convenience only. All the arguments easily extend to
the case with more than two agents.

Assume that the two agents have preferences as in the previous sections. We denote the type set of agent, i=1,2,
by �i. For a generic element of this set we write θ i; generic type profiles in �=×i�

i, are indicated by θ . We assume
that the agents’ types are (independently) drawn from the atomless distribution p with support [0,1]. We do not need
to assume that the designer knows the exact type distribution. For the following result, we only need to impose that he
knows the support of the distribution. Regarding the two agents’ beliefs about each others type distribution we make no
assumptions at all.

Proposition 8. (Full surplus extraction with multiple agents). Consider a two agent setting as described in the
preceding paragraph. Moreover, let the ambiguous mechanism �={(qθ ,tθ ) :θ ∈�}, be defined by

qθ (θ̂ ) =

⎧⎪⎪⎨
⎪⎪⎩

(0,0) if θ = θ̂

(1,0) if
[
θ̂1 �=θ1 and θ̂2 =θ2

]
or
[
θ̂1 �=θ1,θ̂2 �=θ2, and θ̂1 ≥ θ̂2

]
(0,1) else

tθ (θ̂ ) = (qθ
1 (θ̂ )θ̂1,qθ

2 (θ̂ )θ̂2).

Under � truth-telling is an optimal strategy for the two agents irrespective of their beliefs regarding the other agent’s
type or play. Moreover, � is individually rational and consistent (with respect to truth-telling). The expected revenue
generated by each element of � is T =E[max{θ1,θ2}]. That is, � achieves full surplus extraction.

The ambiguous mechanisms presented in the above result can be constructed as follows. For every profile of types

θ̃ = (θ̃1,θ̃2) we add to the ambiguous mechanism a simple mechanism (qθ̃ ,tθ̃ ) with the following property. If both agents’
reports coincide with the corresponding component of the label of the simple mechanism, i.e. if for every i we have θ̂ i = θ̃ i,
then the seller keeps the object and there are no transfers. If, neither agent’s report coincides with label, i.e. if for every i,
θ i �= θ̃ i, then the agent with the higher report receives the object at the price he reported. Finally, if only one agent’s report
coincides with the label of the simple mechanism, then the agent whose report does not coincide receives the object at
the price equal to the value he announced. Since the ambiguous mechanism contains all such simple mechanisms, there
is a simple mechanism for each report of each agent such that the agent does not receive the object if he reports that type.
This bounds the agent’s expected payoff above by 0. By reporting truthfully the agent either obtains the object and pays

32. The following full-rent-extraction result for multiple agents implies that ambiguous mechanisms outperform
simple mechanisms also in situations with multiple agents. For a characterization of expected revenue maximizing simple
mechanisms in general environments see Kos and Messner (2013a) and Kos and Messner (2013b).
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the reported, and therefore true, value or does not receive it and pays zero. In either case the agent’s payoff is zero, which
is also the before established upper bound. But then the agent has no incentives to deviate from truthful reporting. This
establishes that truthful reporting is an equilibrium of the proposed mechanism. On the other hand, assuming that the
agents do report truthfully and that each profile of types occurs with probability zero, each simple mechanism yields for
the seller the expected surplus E[max{θ1,θ2}]. With other words, the seller extracts the full surplus.
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