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Abstract

We study political redistricting in a plurality rule electoral system, and

ask whether there is a way of structuring this process so that a party that

wins the popular vote is guaranteed a majority in the legislature. We present

a formal analysis of this problem that departs from the literature on partisan

gerrymandering and considers instead a system of competitive gerryman-

dering, i.e. a process of redistricting that involves both parties. We invoke

the theory of zero sum games to show that it is possible to specify the rules

of this process in such a way that “majorities cannot be stolen.”
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1 Introduction

The two most important electoral systems for legislative elections are the single-

member plurality system in use in Britain and many of its colonies such as the

United States, and the proportional representation system that is used in many

European countries.

In proportional representation systems, there are usually many parties that

are represented in the legislature in proportion to the votes that they receive in

the election. On the plus side, this implies that any majority in the legislature

represents a majority of voters.1 On the other hand, coalition formation can some-

times be very challenging in proportional representation systems. This difficulty,

as well as the prevalence of powerful special interest parties under proportional

representation, may be a reason for why proportional representation is empirically

correlated with higher levels of spending and taxation, or more corruption than

plurality systems; see Persson et al. (2000); Persson and Tabellini (2002).

In contrast, a stylized fact known as “Duverger’s Law” is that plurality rule

systems generally lead to a two-party system, such as the one featuring Democrats

and Republicans in the United States. In such a system, one of the parties neces-

sarily wins a legislative majority (assuming the number of seats in a legislature is

odd), so there is always a clear election outcome. This makes it easier for voters to

know whom to blame when there are problems. However, an unfavorable feature

of plurality rule systems is that the winner of the legislative majority does not

just depend on which party is preferred by the majority of the overall electorate,

but also on how these votes are distributed over the different districts. An exam-

ple are the 2018 elections of the Pennsylvania House of Representatives. While

Democratic candidates received 55 percent of the popular vote, versus 44.4% for

Republican candidates, Republicans still won 110 out of 203 seats.

Such cases of a divergence between the popular vote and the majority out-

come in the legislature do not arise randomly. They are the effects of skillful

redistricting, usually done by the party that benefits from this “gerrymandering.”

For example, the district map that saved the Republican majority in the 2018

Pennsylvania election was created by them in 2011 when they were in control of

1In practical implementations of the proportional representation system, many countries use

a minimum vote threshold for parties to be represented. In this case, any legislative major-

ity represents a majority of those voters that voted for one of the parties represented in the

legislature.
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the redistricting process. In the United States, legislative districts are redrawn

after each decennial census in order to ensure that each legislator represents the

same number of residents. The task of redistricting falls usually to the current

state legislature, a body composed of individuals who have a high degree of self-

interest in the outcome of the redistricting process. Partisan gerrymandering thus

undermines the legitimacy of election outcomes under plurality rule elections.

In this paper, we therefore ask whether there exists a redistricting system

such that, in subsequent elections, the popular vote and the election outcome are

aligned. In trying to find a better system, we impose that it cannot involve out-

sourcing decisions to a “benevolent social planner” who is only concerned with

fairness; rather, the redistricting process is to be carried out by the two major

parties themselves. This requirement is one of practicality. In a highly partisan

world, it appears implausible that the parties could find such a highly compe-

tent and, at the same time, completely disinterested individual to perform the

redistricting. Even when redistricting is in the hands of a notionally independent

commission, its members are likely to have preferences over which party wins a

majority under the maps they create.

Instead, we use a competitive – as opposed to partisan – redistricting system,

i.e., one that involves both parties. The basic idea is to design an institution in

which the parties keep each other in check. As a main result, we show that such

a system can protect parties against stolen majorities, and the majority of the

electorate against having their preferences in future elections subverted. Broadly,

the logic is familiar from the classical problem of how to fairly divide a cake

between two children – one child cuts the cake in two pieces and the other one

chooses which one she wants to have. Every child has a strategy that ensures

getting at least fifty percent of the cake, and this procedure is arguably preferable

to an alternative one that attempts to design general rules and constraints under

which only one child chooses both the own and the other child’s piece.

We consider the standard setting of the theoretical literature on partisan ger-

rymandering. Voters differ in how likely they are to vote for either party, and need

to be assigned to districts.2 We define a redistricting system as fair if each party

can ensure that it wins a majority in the legislature whenever it wins the popular

2The central theme of this literature is how an optimal partisan gerrymander involves “pack-

ing” (i.e., concentrating opponents in few districts) and “cracking” (distribute one’s supporters

evenly over the remaining majority of districts).
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vote. We specify rules for a competitive gerrymandering game, and then prove

that each party has a simple strategy with which it can ensure that it will get a

legislative majority whenever it wins the popular vote in a future election. We

refer to this strategy as a pecking order strategy. It is based on an order of districts

according to how likely they can be won, and assigns priority to the weakest dis-

trict among those that are needed for a legislative majority. Favorable precincts

are assigned to that district until the chances of winning it have risen to the level

of the next district in the order. From that point on, the priority becomes to lift

the chances in these two districts simultaneously until they are both as good as

the next district in the order, and so on.

Thus, in the context of a stylized model of gerrymandering, we establish a

possibility result: We can specify the rules of gerrymandering so that majorities

cannot be stolen. Like other possibility results in the theories of mechanism or

market design, discussed in more detail below, the stylized institution that delivers

this outcome should not be interpreted as directly ready for practical implementa-

tion. Rather, it is of theoretical value in that it provides an upper bound for what

is in principle achievable when the rules governing the redistricting process are

well designed. Clearly, our stylized model cannot capture everything that is im-

portant in gerrymandering and the question whether competitive gerrymandering

yields desirable outcomes also in richer settings warrants in-depth analyses beyond

the confines of this paper. We discuss some of the challenges for such a research

agenda in the concluding section of this paper. In some cases, though, extensions

of our analysis are straightforward and we sketch the relevant arguments.

Our possibility result is based on a particular sequential game. This game is not

unique. Presumably, there are other protocols that also offer protection against

stolen majorities. Any such protocol must, however, have the property that the

parties can keep each other in check. As the literature on partisan gerrymandering

has shown, when one party unilaterally controls the redistricting process, there is

no hope to implement the popular vote.

An attractive feature of the particular game is that we do not have to take a

stance on what the parties want. They can protect their majorities by making use

of pecking-order strategies. Whether they want to do so is a different question that

the parties have to deal with internally. Presumably, the probability of winning a

legislative majority is not the parties’ sole objective. They may want to have safe

districts for important party representatives, or care about the fraction of districts
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they win, they may also want to ensure a representation of ethnic minorities in

the legislature. We therefore do not predict that parties will actually make use the

pecking-order strategies. Thus, we view “fairness” as a property of the institution

that is used for redistricting, not as a property of a game-theoretic equilibrium.

Related Literature. There is a large literature on gerrymandering, both em-

pirical and theoretical. However, most of the existing theoretical literature is on

“optimal” gerrymandering from the point of view of the party that controls the

gerrymandering process; that is, how to cheat democracy most effectively if given

the opportunity to do so. Few papers deal with the question of how one could

implement a better redistricting system. The earliest such paper is William Vick-

rey’s (1961) paper arguing that “the process [of redistricting] should be completely

mechanical so that, once set up, there is no room at all for human choice.”3

Similarly, Ely (2019) proposes a mechanism designed to prevent weirdly-shaped

districts. Like our paper, his mechanism relies on the participation of both parties

in the redistricting process, and he also appeals to the cake-division problem.

There are also important differences: Ely takes convexity as the key desideratum.

Our analysis, by contrast, focuses on the alignment of election outcomes with the

popular vote, and it abstracts from spatial considerations.

In a very interesting paper, Palmer et al. (2023) propose a novel redistricting

method that they call the Define–Combine Procedure (DCP). Like our procedure,

DCP defines a game in which both parties participate, and their countervailing

interests are used by the mechanism designer to achieve a better social outcome

than one that a procedure under unilateral control of one party implements.4

Thus, the motivation of the benefits of adversarial gerrymandering is very similar

between our paper and theirs. However, our methods are quite distinct. Palmer et

al. (2023) show computationally that the DCP, applied to US data, significantly

reduces the bias of the resulting map relative to one where one party controls the

redistricting process (it appears, though, that the first mover can maintain some

advantage relative to the second mover). In contrast, we prove theoretically that

our mechanism can implement a map with the property that each party wins the

3He proposes an algorithm that produces geographically-compact districts, but does not study

whether elections governed by the generated map have any desirable properties.
4In the first stage of the DCP, one party defines 2N contiguous sub-districts, and then, the

other one gets to form the actual districts by combining two contiguous sub-districts into one

district, respectively
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election whenever they receive the most votes.5

Fundamentally, our paper contributes to a small theoretical literature on how

to improve political systems (Gersbach, 2004; Myerson, 2006; Gersbach and Liessem,

2008, e.g.). Like these papers, our objective is to think about possible changes to

democratic institutions that improve the performance of the system.

Our paper is related to the theory of mechanism design and to implementation

theory, which is applied to numerous problems, ranging from auction design over

redistributive income taxation to the design of social choice rules. In all these

applications, the basic question is whether one can find a game that implements a

desirable outcome. At an abstract level, we ask the same question in this paper.

Applications of mechanism design and implementation theory differ, however, in

what games they look at and in how they define a desirable outcome. In both

dimensions, this paper takes an approach that is without precedent in the previous

literature: First, our system of competitive redistricting can be interpreted as a dy-

namic Colonel Blotto game (for applications of static divide-the-dollar or Colonel

Blotto games, see, for instance, Myerson (1993), Lizzeri and Persico (2001, 2005),

Laslier and Picard (2002), Konrad (2009) and Kovenock and Roberson (2020)).

To the best of our knowledge, using a dynamic version of this class of games is

novel in the literature on mechanism design and implementation theory.6 Second,

applications of mechanism design in economics often aim at the maximization of

economic surplus, social welfare or profits. Our approach, by contrast, takes po-

litical legitimacy to be the objective. Formalizing this objective may be difficult

in general, but for election rules there is a natural choice: Political legitimacy

requires that the party that wins the popular vote gains control over policy.

The proof of our main result uses results from the analysis of zero-sum games.

More specifically, we define a fictitious zero-sum game in which one of the parties

gets a payoff of 1 when it has enough supporters in half of the districts in the

critical state of the world, with the implication that it wins a majority of seats

5Palmer et al. (2023) is set in a world without uncertainty where each party knows the realized

votes of all precincts that have to be distributed, and aims to maximize the number of seats they

win. In contrast, we assume that the overall vote distribution is affected by a state of the world,

and parties aim to maximize the probability of winning a majority.
6Groseclose and Snyder (1996) study coalition formation within a legislature on the assump-

tion that there are two competing vote-buyers. While they also look at a sequential mechanism,

their focus is positive rather than normative in that they seek an explanation for the frequent

occurrence of supermajorities – as opposed to minimal winning coalitions.
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whenever it wins the popular vote. Otherwise the payoff is zero. We then show

that the equilibrium payoff for this party is one. By the min-max-theorem due to

von Neumann (1928),7 this implies that the party has a successful strategy – in

the sense of winning a majority of districts, conditional on winning the popular

vote – for every strategy of the opposing party.8

As is standard in the theoretical literature pioneered by Owen and Grofman

(1988), our formal framework is geography-free, so that parties do not face geo-

graphic constraints. Leaving out spatial considerations provides conceptual clarity

and keeps the paper directly comparable to the existing theoretical literature.

Furthermore, geographical constraints, such as the requirement that all dis-

tricts must be contiguous, are arguably best interpreted as second-best constraints

in traditional redistricting: A partisan gerrymanderer free of any geographic re-

strictions would be able to subvert the will of the electorate to an outrageous

degree.9 Thus, geographic constraints prevent the worst excesses under partisan

gerrymandering. However, since our proposed redistricting systems guarantees

fair outcomes, the second-best justification for geographic constraints is less com-

pelling. Furthermore, while geographic proximity may create one possible “com-

munity of interest,” there are certainly also other, and oftentimes more compelling,

criteria that define other communities of interest. A system that does not require

legislative districts to be contiguous has the advantage that it becomes much easier

to bundle such communities.10

Outline. Section 2 presents a stylized example and discusses our main results

in this context. Rigorous game-theoretic analyses of competitive redistricting can

7See Osborne and Rubinstein (1994) for a textbook treatment.
8Our results also mirror a well-known Theorem by Zermelo (1913) on the game of chess.

According to Zermelo’s theorem, either White has a strategy that guarantees a victory, or Black

has a strategy that guarantees a victory, or both have a strategy that guarantees a draw. While

Zermelo, of course, cannot characterize these strategies for chess, we do not just show that there

exist strategies that guarantee winning the election (conditional on winning the popular vote),

but we also describe them.
9Indeed, a party needs only slightly more than 1/4 of the overall votes to secure a legislative

majority if the votes are allocated to districts “optimally” (from the party’s point of view).To

achieve such an outcome, allocate the party’s voters such that they constitute a bare majority in

a bare majority of districts, while the remaining districts vote unanimously for the opposition.
10For example, generating a contiguous majority-Muslim district in Germany, or a majority-

Asian district in most U.S. states would be extremely difficult, even though these communities

constitute a significant minority in many places.
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be found in Sections 3 and 4. In Section 3, we show that a simple game of

competitive redistricting offers protection against stolen majorities – if the order of

moves can be tailored to party characteristics. In Section 4, we show that a many-

rounds version of the simple game works irrespectively of how the order of moves

is specified. A discussion of important aspects of gerrymandering which transcend

our formal analysis can be found in Section 5. Formal proofs are relegated to the

Online-Appendix.

2 A simple example

Partisan gerrymandering. Consider a polity that consists of a large number

of precincts (i.e., indivisible geographic units, several of which make up a legislative

district). We refer to the two parties as Republicans and Democrats, though these

are purely labels. There are two types of precincts: In Republican-leaning precincts

(which constitute one-half of all precincts), the Republican vote share is 0.6+0.1ω,

while in Democratic-leaning precincts (the other half), the Republican vote share

is 0.3 + 0.1ω. Thus, the margins of victory fluctuate in both types of precincts,

e.g. because of changes in the popularity of political leaders, and a higher state of

the world ω ∈ [0, 1] captures times that are more favorable to Republicans.

Partisan redistricting can be very effective in this setting. Suppose, for exam-

ple, that Republicans control the redistricting process. Observe that a district is

guaranteed to be won by the Republican candidate if the share of Republican-

leaning precincts is at least 2/3 because then, even in the worst case, the Repub-

lican vote share is (2/3)× 60%+ (1/3)× 30% = 50%. Also note that Republicans

can make sure that 75 percent of all districts have a share of Republican-leaning

precincts equal to 2/3. Thus, they can make sure that they win (at least) 3/4 of

all districts in all states of the world. See Figure 1 for an illustration.

Competitive gerrymandering. To see how our proposed system works, con-

sider the same example polity, and denote the players D and R. The task is to

define 2N equal-sized legislative districts. In addition, there is one at-large district

that also sends one representative and ensures an odd number of representatives

in the legislature.

At the beginning, each party receives a budget set consisting of half of the

precincts of each type. D starts and assign each precinct to a district (such that
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Figure 1: 12 districts. For any district, Republican-leaning precincts are drawn in red and

Democratic-leaning precincts in blue. The total numbers of blue and red precincts are equal.

Partisan gerrymandering enables the Republicans here to create 9 out of 12 districts that have

a 2/3 share of Republican-leaning precincts and are won in every state of the world.

each district consists of the same number of precincts). After D is done, it’s R’s

turn to assign precincts to districts.

It is straightforward to show that each party has a strategy that can guarantee

itself a majority in the legislature whenever it wins the popular vote (i.e., D if

ω < 0.5, and R when ω > 0.5).

In any district, R, the second mover, can just “mirror” D’s move. For example,

if D assigned 60 percent Democratic-leaning and 40 percent Republican-leaning

precincts to district k, R can produce a perfectly balanced district by assigning 60

percent Republican-leaning and 40 percent Democratic-leaning precincts. Figure 2

illustrates this balancing strategy.

It is clearly feasible for R to play this balancing strategy for each district, which

results in each district going to the winner of the popular vote. Observe, though,

that the balancing strategy is not necessarily optimal for R. This depends on how

D distributed the precincts, and on R’s objective. Thus, a full characterization of

best responses or of the subgame-perfect equilibrium would be more cumbersome.

Consider now D, the first mover. Suppose that D assigns only Democratic-

leaning precincts to the first N districts, and only Republican-leaning precincts

to districts N + 1 to 2N . Clearly, this is feasible as it uses up all precincts.

Furthermore, no matter what R does in its move, the first N districts will have

at least a 50 percent share of Democratic-leaning precincts, so will be won by D

whenever ω < 0.5. Since D also wins the at-large district whenever ω < 0.5, D is

guaranteed a majority in the legislature whenever ω < 0.5.

An asymmetric setting. In the following analysis, we will show how to gen-

eralize this example to the case that the number of Democratic- and Republican-
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Figure 2: 12 districts. For any district, Republican-leaning precincts are drawn in red and

Democratic-leaning precincts in blue. The total numbers of blue and red precincts are equal.

The bottom part shows a generic precinct assignment by Democrats, with districts ordered

according to their share of Democrat-leaning precincts. The top part shows a feasible Republican

balancing strategy that neutralizes, for any district, deviations from the aggregate popular vote.

leaning precincts is not the same, and that the average partisan lean of these

two types of districts is not the same. This is a relevant generalization because,

throughout the United States, Democrats are often very strongly concentrated

in urban areas, and Chen and Rodden (2013) suggest that this geographic fact

alone provides a significant advantage for Republicans in a traditional redistricting

process. We will show that we can maintain a fair system in that setting.

To understand why matters become more involved, consider an example in

which 1/3 of precincts are Democratic-leaning, with Republican vote share 0.2 +

0.2ω, and 2/3 of precincts are Republican-leaning, with Republican vote share

0.5+0.2ω. Compared to before, there are now fewer Democratic-leaning precincts,

but in those precincts the Democrat’s margin of victory is higher. Again, Democrats

win the popular vote if and only if ω < 0.5.11 As we now argue, the sequence of

moves matters in such an asymmetric setting. When D moves first, it is still the

case that every party can ensure to win a majority of districts whenever it wins

the popular vote. This is not the case when R moves first.

Again, the parties have equivalent budget sets; that is, both players have to

11Furthermore, observe that we are not imposing any specific probability on the event that

ω < 0.5 — this probability can be arbitrary, it does not have to equal 1/2.
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Figure 3: 12 districts. Overall, there are twice as many Republican-leaning precincts (red) as

Democratic-leaning precincts (blue).

Bottom part: precinct assignment by R such that 8 districts only contain red precincts, and 4

districts only contain blue precincts.

Top part: Feasible response by D that wins a majority of districts in some states in which the

Republicans win the popular vote.

assign a set of precincts that has a 2/3 share of Republican-leaning precincts and

a 1/3 share of Republican-leaning precincts. Suppose that D moves first. Like

in the previous example, D can ensure a win whenever ω < 0.5: By assigning a

percentage share of 2/3 of Democratic-leaning precincts to half of the districts,

it can guarantee that these districts are won (at least) whenever ω < 0.5, even

if R were to add only Republican-leaning precincts to these districts. R can also

ensure to win a majority of districts whenever they win the popular vote, i.e. when

ω > 0.5. Whatever D does in the first move, half of the districts will have been

assigned a share of Democratic-leaning precincts that is below 2/3. If R assigns

only Republican-leaning precincts to those districts, it will win those districts

whenever ω > 0.5.

In contrast, what would happen if R moves first? As the share of Republican-

leaning precincts is greater than one-half, R cannot block all of them together in

one-half of the districts. Thus, R cannot play the type of move that is analo-

gous to the one suggested above for D. Blocking Republican-leaning precincts in

2/3 of districts is feasible, but this strategy does not ensure a legislative majority

whenever ω < 0.5. To see this, suppose that R creates 2/3 of districts that are

composed only of Republican-leaning precincts, and 1/3 of districts that are exclu-
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sively Democrat-leaning. Then, D can add only Republican-leaning precincts to

the latter, and block their Democrat-leaning precincts in another third of districts,

while the remaining third is composed only of Republican-leaning precincts. See

Figure 3. Thus, in the two-thirds of districts that consist of an equal share of

Democratic and Republican-leaning precincts, the Republican vote share is

1

2
[0.2 + 0.2ω] +

1

2
[0.5 + 0.2ω] = 0.35 + 0.2ω,

which exceeds 0.5 only if ω > 3/4. Thus, if ω ∈ [0.5, 0.75), Democrats win the

majority while losing the popular vote. As we show in Section 4, the disadvantage

for R can be overcome when voters are assigned over multiple rounds.

Discussion: Which party is the disadvantaged party? The previous dis-

cussion may suggest that R is in a weak position. It needs to be given the second

mover advantage, otherwise it cannot protect itself against the possibility of a

stolen majority. In that case, however, D is put in a disadvantaged position. It

has to block its Democratic-leaning precincts in half of the districts, otherwise its

majority can be stolen. But then R can take advantage of this, for instance, by

achieving an overall outcome so that

� A quarter of all districts has a share of Democratic-leaning precincts equal

to 5/6.

� A quarter of all districts has a share of Democratic-leaning precincts equal

to 1/3.

� Half of the districts has a share of Democratic-leaning precincts equal to

1/6.

Consequently, when ω > 0.5, the Republicans win 3/4 of all districts. By contrast,

when ω < 0.5, the Democrats win only 1/2 of all districts, and the at-large district

is then needed as a tie-breaker. As we show below, this disadvantage for D is also

overcome when voters are assigned over multiple rounds.

Discussion: How to make sure that the parties have equivalent budgets?

Our analysis rests on the assumption that precincts can be allocated to budget

sets for the two parties so that both sets have equal shares of Republican-leaning

and Democratic-leaning precincts. This requires a mechanism to determine which
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Figure 4: 12 districts. For any district, Republican-leaning precincts in red and Democratic-

leaning precincts in blue. Overall, there are twice as many red than blue precincts.

Bottom part: Precinct assignment by D that guarantees a D legislative majority whenever they

win the popular vote: 6 districts are assigned a share of 2/3 blue precincts, and are won by D

whenever Ds win the popular vote, no matter what R moves.

Top part: Feasible R response such that Rs always win 6 districts, and win another 3 districts

whenever R has a majority of the popular vote.

precinct is going to which party’s budget set. In the context of the model, this is

easy. There are only two types of precincts and each party should simply get half

of the districts of either type. In practice, it may be more difficult to find an exact

doppelganger for each and every district. Still, if the overall number of precincts

is large, then a mechanism that assigns precincts at random to the two budget

sets would produce two budget sets that are close to equivalent with a very high

probability (by the central limit theorem).

An alternative mechanism that makes sure that the parties end up with exactly

equivalent budget sets is the following: assign each precinct to both parties, and

let each party assign any particular precinct to a district. Voters in that precinct

can then vote in both of the districts that they have been assigned to.12 As

a consequence, voters have two representatives. This is some departure from the

existing system in the United States, but hardly a radical one. Indeed, most voters

already have two legislative state representatives, one in the state house and the

other one in the state senate. Likewise, at-large representatives, in addition to

district representatives, exist in many cities. Finally, while this system would

12If both parties happen to assign a precinct to the same district, the votes of these voters

would simply count twice in that district’s election.
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increase the number of elections each citizen votes in, practically speaking, the

required increase in ballot length relative to the status quo would be quite small.

3 Formal Analysis

This section contains propositions that complement, in a more general setting, the

informal discussion in the preceding section. Specifically, we do not impose the

assumption that the parties’ vote shares depend linearly on the state of the world,

but just impose that vote shares are monotonous is ω. Furthermore, we assume

that the parties differ in how concentrated their support is, referring to the one

with more concentrated support as Democrats (labeled D), and the other party

as Republicans (labeled R).

We first consider a protocol with one round in which D moves first and R

second. Theorem 1 then establishes that the more popular party (whichever it

is) has a strategy that protects its majority from being stolen. Proposition 1,

moreover, shows that there is one and only one such strategy for D.

Subsequently, we turn to an alternative protocol with many rounds. We show

that Theorem 1 and Proposition 1 extend to this setting. In addition, there is

now also a version of Proposition 1 that applies to R. Thus, the many rounds pro-

tocol is fair in that both parties have essentially only one strategy that protects

them against stolen majorities. Moreover, when both parties play those strategies,

almost all districts have the same shares of Democrat- and Republican-leaning dis-

tricts as the electorate at large. Thus, races at the district level are as competitive

as the race for the popular vote.

3.1 Setup

There are 2N local districts, indexed by k ∈ {1, 2, . . . , 2N}, and one at-large

district. There are two types of “precincts,” t ∈ {t1, t2}, that we interpret either

as individuals, or as the smallest unit that can be assigned to a district.13 The

mass of type tj precincts is given by

bj = 2N βj , where β1 + β2 = 1 and β1 ≤
1

2
.

The state of the world ω ∈ Ω ⊂ R is the realization of a real-valued random

variable and affects v(t, ω), the probability that a type t unit votes for R in state ω.

13In Section 5, we discuss how our model extends to more than two types of precincts.
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The function v is strictly increasing in both arguments; i.e., in any given state ω,

type 2 is more likely to vote R than type 1, and higher ω increases the share of R

voters among both types of precincts. We adopt a law of large numbers convention

and also interpret v(t, ω) as the share of voters in type t precincts voting for R in

state ω.

The popular vote. Let ω̂ ∈ Ω denote the state that yields a tie in the popular

vote, i.e.,14

β1 v(t1, ω̂) + β2 v(t2, ω̂) =
1

2
. (1)

R wins the popular vote if ω > ω̂, while D wins the popular vote if ω < ω̂.

Conditional on state ω̂, type 1 precincts have more D voters and type 2 precincts

have more R voters,

v(t1, ω̂) <
1

2
< v(t2, ω̂) .

We also assume that type 1 precincts are weakly more partisan than type 2

precincts in the sense that, in the critical state ω̂, the proportion of D-precincts in

type 1 districts is at least as high as the proportion of R voters in type 2 precincts,

1− v(t1, ω̂) ≥ v(t2, ω̂) .

Interpretation. One special case of this setup has v(t1, ω̂) = 0 and v(t2, ω̂) =

1 and β1 = β2. In this case a “precinct” is really an individual whose vote,

conditional on the state, the parties can perfectly predict. In state ω̂, type 1 (2)

votes for D (R). For states ω > ω̂, some type 1 voters – formally, a fraction that

is increasing in ω – vote R. Likewise, for ω < ω̂, some type 2 voters vote D.

By contrast, when v(t1, ω̂) ∈
(
0, 1

2

)
or v(t2, ω̂) ∈

(
1
2
, 1
)
a “precinct” can be

interpreted as a census block that needs to be treated as an indivisible unit for

the purposes of redistricting. Any such unit of type tj contains a fraction v(tj, ω̂)

of individuals who vote R, and a fraction 1 − v(tj, ω̂) of individuals who vote D.

As ω increases above ω̂, R’s vote share increases in both types of precincts, and

vice versa.

When 1 − v(t1, ω̂) > v(t2, ω̂), i.e., type t1 is strictly more partisan than

type 2, then β2 > 1
2
. Hence, while there are equal numbers of D and R voters

14To assume the existence of ω̂ is without loss of generality because it may have zero proba-

bility.
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at the aggregate level in state ω̂, D precincts are more concentrated: Fewer units

mostly vote for D, β1 < β2, but in those units, D’s vote share is higher than R’s

vote share in the R-leaning units.

District outcomes. After precinct assignments are done, every district k con-

tains some mix of type t1 and type t2 precincts. More formally, a precinct assign-

ment by party P ∈ {D,R} is a collection σP = (σPk)
2N
k=1, where

σPk = (σ1
Pk, σ

2
Pk) with σ1

Pk + σ2
Pk = 1 ,

is the precinct assignment to district k by party P . To be consistent with the

overall distribution, across districts we must have

1

2N

2N∑
k=1

σ1
kP = β1 and

1

2N

2N∑
k=1

σ2
kP = β2 .

R wins district k in state ω if

(σ1
Dk + σ1

Rk) v(t1, ω) + (σ2
Dk + σ2

Rk) v(t2, ω) >
1

2
. (2)

D wins if the reverse inequality holds.

Winning a majority of seats. Recall that there are 2N districts and an at-

large-district. Thus, the party that wins at least N + 1 seats wins a majority

in the legislature. Given a pair of precinct assignments (σD, σR), we denote the

probability that R wins a majority of seats, conditional on it winning the popular

vote, by ΠR(σD, σR | ω > ω̂). We define ΠD(σD, σR | ω < ω̂) analogously.

3.2 Achieving fair outcomes

D, the party with the more concentrated support, moves first and chooses σD =

(σDk)
2N
k=1. R observes this choice and chooses σR = (σRk)

2N
k=1. Theorem 1 shows

that, each party has a strategy that guarantees winning a legislative majority

whenever it wins the popular vote, no matter what the opponent does.

Theorem 1

1. Party D has a strategy that guarantees that it wins a legislative majority

whenever ω < ω̂: There is σD so that ΠD(σD, σR | ω < ω̂) = 1, for all σR.
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2. Party R has a strategy that guarantees that it wins a legislative majority

whenever ω > ω̂: For every σD, there is σR so that ΠR(σD, σR | ω > ω̂) = 1.

The Theorem shows that the given protocol for competitive redistricting is fair in

the sense that both parties can protect their majorities.15

Theorem 1 does not contain the characterization of a game-theoretic equilib-

rium. A proper game-theoretic analysis requires a specification of party objectives

and so far we have remained agnostic about what the parties actually want. This

said, the strategies in Theorem 1 are equilibrium strategies when all that the par-

ties care about is whether they win a legislative majority; more formally a game

in which either party’s payoff is 1 when it has a legislative majority and zero

otherwise.

The proof of part 1 of Theorem 1 is along the lines of the example in the pre-

vious section: D can block all its supportive precincts into one half of all districts.

After D’s move, these districts all have double the percentage of Democratic-

leaning precincts as the state at-large. Even if R puts only Republican-leaning

precincts in those districts, this only dilutes the percentage of Democratic-leaning

precincts down to the state-wide average. Thus, if ω < ω∗, D does not just win the

at-large district, but also these N districts. Proposition 1 below shows, moreover,

that this strategy for D is unique; i.e. there is no other strategy with the property

ΠD(σD, σR | ω < ω̂) = 1, for all σR.

The proof of part 2 of Theorem 1 relies on the fact that R can react to whatever

D did. Essentially, R can pick off those N districts in which D put the fewest

Democratic-leaning precincts; specifically, after D’s move, all of these precincts

contain a share of Democratic-leaning precincts that is no more than 2β1. But

any district with such a share can be diluted down to β1 (by not allocating further

Democratic-leaning precincts to it).16

Proposition 1 Suppose that β1 < 1/2. Then, up to a relabeling of districts, there

15As discussed in the introduction, in reality, parties do not necessarily play to minimize

the probability of a stolen majority. They may also have other objectives in redistricting, for

example incumbent protection or the representation of party wings or ethnic groups. Whether

the maximal protection of its majorities actually is in a party’s interest is an issue that the party

has to deal with internally.
16Observe that it is feasible for R to get rid of its Democratic-leaning precincts by allocating

them entirely to the top-half of districts (i.e., those that were endowed with the largest percentage

of Democratic-leaning precincts by D).
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is one and only one strategy σD so that ΠD(σD, σR | ω < ω̂) = 1, for all σR: choose

σ1
Dk = 0 for half of the districts and σ1

Dk = 2β1 for the other half.17

When D blocks all its strongholds in half of the districts, none of them is wasted

on a district that D doesn’t win in state ω∗. There are two, not mutually exclu-

sive ways in which D could deviate from this strategy, but Proposition 1 shows

that both are bad for D. First, they could have a non-even distribution of their

strongholds in half of the districts. Second, they could allocate their strongholds

over more than half of the districts.

In the first case, the least-Democratic district in the targeted half has a lower

content of Democratic-leaning precincts than 2β1 after the Democrats’ move. R

then can add some more Democratic strongholds to some of the most Demo-

cratic districts (essentially giving up on them), and can then spread the remain-

ing Democratic strongholds uniformly on its own half. This strategy guarantees

that the Democratic content of all districts in the Republican half, as well as in

the least-Democratic district in the Democrats’ targeted half, has fewer than β1

Democratic-leaning precincts.

Second, if D uses some of its strongholds in the other half of districts, the

budget constraint forces D to allocate fewer than 2β1 Democratic strongholds to

the least-Democratic district in its half. R has sufficient flexibility in terms of

allocating its Democratic strongholds to make that district Republican-leaning in

state ω∗, while also maintaining an advantage in their half of districts. Again, the

key to this is that R can give up on some districts and fill them to the brim with

Democratic strongholds, thereby easing its problems in all other districts.

With one round, there is no analogue to Proposition 1 for R. There are

numerous ways in which R can ensure to win a majority of districts whenever

ω > ω∗. For one, R can balance every district; that is, distribute the Democratic-

leaning precincts uniformly over the other half of districts, while allocating only

Republican-leaning districts in those districts targeted by D. This creates 2N

districts that all look exactly like a replica of the electorate at large.

On the other hand, R can also double down and allocate all Democratic-leaning

precincts to the same districts as D. This amounts to creating N districts that are

essentially secure for D, and N that are essentially secure for R, with the at-large

district being decisive for which party wins a legislative majority.

17As stated, this strategy is unique up to a relabeling of districts, so any strategy that has

σ1
Dk = 2β1 for exactly one-half of districts works.
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Since there are multiple ways in which R can maximize its probability of con-

trolling the legislature, it is free to choose an option that maximizes any secondary

objective, such as maximizing its expected number of seats (subject to achieving

the maximal winning probability). This generates an asymmetry between parties

with respect to these secondary objectives; however, Section 4 shows that this

asymmetry is eliminated when precincts are assigned to districts over multiple

rounds.

3.3 Neutral rules

Another reason why it is useful to look at multiple rounds is that the rules of

the game above condition the order of moves on party characteristics. The party

whose strongholds are more concentrated is designated as the first mover. What if

the rules have to be written in a neutral way? Suppose that the rules can refer to

two parties, but must treat them symmetrically, that is, who moves when can be

decided by randomization, or by which party is the current majority party (i.e.,

some exogenous criterion), but cannot condition on which party’s support is more

concentrated. As illustrated in Section 2, this leads to problems in a one-round

system. When R moves first, its protection against stolen majorities is gone. As

we will now show, with many rounds, we can have both neutrality and a protection

against stolen majorities.

4 Many rounds

In this section, we analyze the game when rules specify that there are L rounds,

where L is large, and in each round, parties alternate, and each party distributes

a fraction 1/(2LN) of their precincts to each district. We show that each party

can again ensure that it wins in all states of the world in which it has a majority

of the popular vote. Moreover, the strategies that achieve this objective have the

property that, if both parties play them, then almost all districts will be replicas

of the voter preference distribution of the polity at-large, and thus, competitive.

We show first that Theorem 1 extends to the multi-round setting; both parties

continue to be able to protect themselves against majorities being stolen from

them. The difference is that many rounds create a level playing field in the fol-

lowing sense: R no longer has a second-mover advantage.
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More precisely, we show that R has to play a particular strategy – which we

refer to as a pecking order strategy – to protect itself against stolen majorities. We

show, moreover, that when D also plays a pecking order strategy of their own,

then (i) it wins a majority of districts whenever it wins the popular vote, and

hence, is also protected against stolen majorities and (ii) almost all districts are

turned into replicas of the at-large district.

Notation. Precincts are allocated to districts over L rounds. In every round,

both parties take turns in assigning precincts to districts. For concreteness, we

assume that, for l odd, R moves first and D second; for l even, D moves first and

R second. However, interchanging this move order would not affect our results.

In each round l, each party P specifies σPl = (σ1
kP l, σ

2
kP l)

2N
k=1 so that

σ1
kP l + σ2

kP l =
1

L
.

Thus, in any round l ∈ {1, . . . , L}, each party P assigns a mass of 1
L
precincts to

any district k ∈ {1, . . . , 2N}. The total mass of precincts assigned per party per

round therefore equals 2N
L

overall, and 1
L
per district.

Denote the total mass of type t1 partisans assigned by party P to district k

over the L rounds by σ1
kP :=

∑L
l=1 σ

1
kP l. Analogously, let σ

2
kP :=

∑L
l=1 σ

2
kP l. To be

consistent with the overall distribution of voters, (σkP )
2N
k=1 must satisfy

1

2N

2N∑
k=1

σ1
kP = β1 and

1

2N

2N∑
k=1

σ2
kP = β2 .

Theorem 2 Let N ≥ 3. There is L̂, so that, for L ≥ L̂: There is a strategy σR

so that

ΠR (σD, σR | ω > ω̂) = 1 , for every σD ,

and there is a strategy σD so that

ΠD (σD, σR | ω < ω̂) = 1 , for every σR .

As in the one-round game, the party with more concentrated support, D, can

protect its majorities simply by assigning, over the course of the whole procedure,

a mass of 2β1 type 1 precincts to half of the districts. Then, for any strategy of

R, the percentage share of type 1 precincts in those district is at least β1, which

is the share necessary to win a district whenever ω < ω̂. Furthermore, as D also
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wins the at-large district whenever ω < ω̂, this guarantees a legislative majority

for D.

The more difficult part of the Theorem is to show that R can also protect its

majorities form being stolen. With one round, R’s task was facilitated by the fact

that R could allocate all of its precincts after having observed D’s assignment;

however, this second-mover advantage also generated an asymmetry enabling the

creation of a Republican supermajority in expectation. In the multi-round game,

things are more difficult for R, but, as we explain now, there still is a strategy

that it can use to protect its majorities from being stolen.

4.1 How to protect Republican majorities

To show that Republicans can protect their majorities from being stolen we analyze

a fictitious zero sum game. In this game R, gets a payoff of πR = 1 when there

are at least N districts with a type t2 precinct share of at least β2. Otherwise, R’s

payoff is πR = 0. D’s payoff is given by πD = 1 − πR. We then show that party

R has a strategy that guarantees a payoff of 1 in that game. By the properties

of zero-sum games, if party D deviates from its equilibrium strategy in the zero

sum game, then R’s payoff can only go up. This implies that when R chooses its

equilibrium strategy from the zero-sum game in our actual game of interest, then

R wins a majority of districts whenever it wins the popular vote.

A zero-sum game. In the fictitious zero-sum game the sequence of moves is as

outlined as above, but payoff are as follows: R gets a payoff of πR = 1 when there

are at least N districts with a type t2 precinct share of at least β2. Otherwise, R’s

payoff is πR = 0. D’s payoff is given by πD = 1− πR.

In the following, we order districts according to their share of type 1 precincts,

so that District 1 has the (weakly) lowest, and District 2N has the (weakly) highest

share of type 1 precincts. Lemma 2 in the Appendix shows that this is without loss

of generality throughout all rounds because strategies that lead to a reordering of

districts (say, adding precincts in a way such that District 5 after the move has

strictly more type 1 precincts than District 6) are weakly dominated by order-

preserving strategies. Thus, we can restrict parties to only consider assignments

that preserve the district ranking.
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Lemma 1 Let N ≥ 3. In the zero-sum game, there is L̂ so that L > L̂ implies

πR = 1 in equilibrium.

Before we illustrate the main argument in the proof, we explain the significance

of Lemma 1 for the proof of Theorem 2. R’s equilibrium strategy in the zero-sum

game allows it to hold the share of type t1-precincts in half of the districts (weakly)

below β1, for any strategy of D. Consequently, if R plays the same strategy in the

original redistricting game, it wins all of these districts whenever ω > ω̂. Could

D prevent this outcome by deviating from its equilibrium strategy in the zero-

sum game? The answer is negative because any equilibrium strategy for R in the

zero-sum game solves a maximin-problem, i.e., it maximizes R’s payoff under the

assumption that D’s strategy is chosen to minimize the maximum attained by R;

see e.g. Osborne and Rubinstein (1994). Thus, if D does not behave this way, R’s

payoff cannot decrease. We therefore obtain the following Corollary to Lemma 1.

This completes the proof of Theorem 2.

Corollary 1 Let N ≥ 3. In the zero-sum game, there is L̂ so that L ≥ L̂ implies

the existence of a strategy σR so that ΠR (σD, σR | ω > ω̂) = 1, for all σD.

On the proof of Lemma 1: Pecking order strategies. Because we can

focus on the zero-sum game being played in such a way that districts with lower

numbers have a (weakly) lower share of type t1-precincts, R needs to ensure that,

after L rounds of play, the percentage share of type t1-precincts in district N does

not exceed β1.

To maximize this share, D should not waste type t1-precincts in lower-ranked

districts, but rather concentrate type t1-precincts in the N+1 top-ranked districts.

Specifically, whenever D moves in round l, and plans to assign a certain mass of

t1-precincts, the following pecking order is optimal: Assign t1-precincts to district

N until its mass of t1-precincts is equal to the one in district N + 1. From that

point on, keep these two districts at a joint level and add further t1-precincts

until this joint level equals the one in district N + 2, and so on, until no further

t1-precincts are left, see Figure 5 for an illustration in a setting with ten districts

(N = 5).

What is an optimal response for R? Its problem is to dispose of a total mass

of 2Nβ1 t1-precincts in such a way that they contribute as little as possible to the

mass of t1-precincts in district N . What is clearly harmless is to add t1-precincts
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(a) Few t1 precincts to distribute

k1 2 3 4 5 6 7 8 9 10

2

1

(b) Many t1 precincts to distribute

Figure 5: 10 Districts. Begin-of-round stock of t1-precincts in blue. Optimal additions by D

in light blue.

to districts with ranks up to N − 1, provided they are not yet at an equal level

with the district that has rank N . Thus, when party R assigns some mass of t1-

precincts, it first fills the bottom N − 1 districts up to the point where a common

level of t1-precincts is reached in the bottom N districts; see Figure 6a for an

illustration under the assumption that the mass of t1-precincts assigned in round

l does not suffice to bring the bottom 4 districts to the level of district 5.

In Figure 6b, instead, the mass exceeds that quantity. When additional t1-

precincts need to be assigned after a common level in the bottom N districts

has been achieved, party R continues with districts in the upper half. Here,

concentrating on the top-ranked districts is optimal. R starts with the top-ranked

District 2N and fills it up as much as possible. If the per-round capacity constraint

of 1
L

for that district is reached, R starts to fill District 2N − 1, and so on.

Intuitively, R discards the extra t1-precincts in very few districts in order to make

it as difficult as possible for D to “use” these t1-precincts in an attempt to raise
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(a) Few t1 precincts to distribute.
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(b) Many t1 precincts to distribute.

Figure 6: 10 Districts. Begin-of-round stock of t1-precincts in blue; R’s additions

in purple.

the t1-share in the pivotal district N .

Why does the distribution of precincts in non-pivotal districts k ̸= N matter

at all? Suppose instead that R distributes the t1-precincts uniformly over districts

N + 2 to 2N . That makes it easier for D to raise the t1-content of district N + 1

in the next round: Remember that, when district N + 1 reaches the level of

district N + 2, D allocates t1-precincts to both of these districts in order to avoid

a district rank reversal. By allocating t1-precincts to the highest-ranked districts,

R ensures that this no-rank-reversal constraint for D kicks in as early as possible,

thereby preventing D from concentrating more of its most loyal voters in the

pivotal district.

For a complete characterization of equilibrium strategies we would also need

to describe how many t1-precincts are assigned by whom and when, i.e., we would

need to characterize, for each party P and any round l, the equilibrium value

of β1
Pl, defined as the percentage share of t1-precincts in the total mass of 2N

L
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precincts assigned by party P in round l. We do not provide such a complete

characterization, but show that R can choose the sequence {βD
Pl}Ll=1 so that the

share of t1-precincts in district N remains below β1. To this end, assume that R

chooses βD
R1 = 0, and for any l ≥ 2, βD

Rl = βD
Dl−1. Thus, R waits until D starts

to assign t1-precincts and then assigns in, any round, as many t1-precincts as D

assigned in the round before.

Thus, after any of R’s moves, the bottom 2N − 2 districts have the same

level of t1-precincts, while there are some further t1-precincts in the top ranked

district, and, possibly, also in the district with the second highest rank. To see

this, suppose for concreteness, that D chooses β1
D1 > 0. Then, it will spread a

mass of β1
D1

2N
L

t1-precincts evenly over N +1 districts. In round 2, R will use the

mass of precincts previously assigned to N − 1 of those districts to equalize the

level in the bottom half. The remaining mass of t1-precincts is then assigned to

at most two top districts. This pattern is now repeated over various rounds, with

the implication that, after any move of R there is a joint level of t1-precincts in

the bottom 2N − 2 districts.

}
1
L

2

1

k1 2 3 4 5 6 7 8 9 10

Figure 7: 10 Districts. R assigns as many t1-precincts as D did in the previous round. Light

blue: First-round assignments of t1-precincts by D. Light red: R’s first-round response. Blue:

Second-round assignments of t1-precincts. Purple: R’s second-round response. As a consequence,

there is a common level in the bottom eight districts, both after R’s first and second response.

It is now evident that the share of t1-precincts in the pivotal district N cannot

strictly exceed β1. This would imply a percentage share above β1 in all districts,

and is incompatible with the fact that the overall share of t1-precincts is β1.

Also note that there is a common level of t1-precincts in all districts, with the

possible exception of the two top ranked ones, see Figure 7. Thus, R’s equilibrium

strategy guarantees winning a majority whenever ω ∈ ΩR.
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4.2 Further implications of the zero sum game

The above analysis has shown that the fictitious zero sum game has an equilibrium

where both parties play pecking order strategies. Moreover, the equilibrium is such

that the share of t1 precincts in the pivotal district N is bounded from above by

β1. (Since the game is zero-sum, every equilibrium needs to have that property.)

Moreover, in the equilibrium characterized, R does not assign any t1-precincts

to the pivotal district N . While there may be other equilibrium strategies for R

– which might differ by the order in which type t1 precincts are assigned to non-

pivotal districts – every equilibrium strategy for R has the property that no type

t1 precincts are assigned to district N . Otherwise D could exploit this and raise

the share of t1 precincts above β1, so that Democrats would win N + 1 districts,

and hence a majority in the legislature, in some states ω > ω∗.

Thus, to protect its majority, R has to follow the pecking order strategy, or,

one that has equivalent implications for the pivotal district. Mutatis mutandis,

the same is true for D. If it deviated from its pecking order strategy in such a

way that it assigned less than 2β1 type t1-precincts to the pivotal district N , then

R could win in some states ω < ω∗.

We interpret these observations as analogues to Proposition 1 which showed,

for the game with one round, D has only one choice if it seeks to protect its

majority from being stolen; in contrast, R had more degrees of freedom in the one-

round game and could use them to further expand its majority whenever ω > ω∗

while winning almost the same number of seats as D when ω < ω∗. In contrast,

the multi-round game eliminates this asymmetry; both parties (essentially) have

to play pecking order strategies in order to protect their majorities, and so the

consequences of ω > ω∗ and ω < ω∗ for the seat shares of the parties are symmetric.

5 Discussion

Our model shows that we can specify a dynamic game in which both parties assign

precincts to districts such that each party has a strategy that guarantees winning

a majority in the legislature whenever it wins the popular vote. We now discuss

some extensions.

Supermajorities. An implication of both parties playing pecking order strate-

gies in this game is that R distributes its t1-precincts evenly over the bottom half
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of districts, while D distributes its t1-precincts evenly over the top half of districts.

Consequently, all districts are turned into replicas of the overall electorate. Thus,

whichever party is more popular in an election will win almost all districts.

For reasons outside of our model, an outcome in which the winning party wins

in almost all districts may be problematic. Even though the minority party has

only limited influence on which policies are enacted even if it is represented in the

legislature, this representation may have beneficial effects. For one, the minority

can at least participate in the discussion of legislative proposals and provide ad-

ditional information in this context, and, to the extent that they can persuade

the majority party, they can have (possibly Pareto-improving) influence on pol-

icy. A strong opposition within the legislature may also be useful for providing

information about legislative proposals to the public.

Furthermore, if legislative experience matters for performance, then the voters’

opportunity to replace the current majority (if either voters’ political preferences

shift, or if the current majority party “misbehaves” and needs to be replaced for

incentive reasons) is better if the opposition party contains at least some experi-

enced legislators.

There are (at least) two possible adjustments of our system that guarantee a

substantial opposition representation in the legislature. First, we could turn each

district into a multi-member district. For example, suppose that each district is

represented by 3 legislators. Within each district, there is proportional represen-

tation (or some transferable vote system), so that the party that gets more votes

in the district receives 2 representatives, and the other party the remaining seat

if its vote share is above a threshold.18

In this case, the redistricting game between the parties remains exactly the

same, and the losing party is essentially guaranteed a representation of one-third

in the legislature. In contrast to a system with one representative per district, this

system would also guarantee that each voter is represented, in the legislature, by

(at least) one member of his favorite party from his district.

18The percentage of votes that is required to win one seat in a district of three representatives

depends on the specific rules that map the votes obtained by the parties in the district to a seat

allocation. For example, with both the Hare-Niemeyer procedure and the Webster/Sainte-Lague

procedure (the methods used in German federal elections from 1987 to 2005, and after 2005,

respectively), obtaining more than 1/6 of the vote entitles the weaker party in a district with

three representatives to one seat. The methods would differ in the vote share that is required to

guarantee the stronger party two seats if there are three or more parties.
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Another possibility that maintains that only one member represents all voters

in a given district is as follows. In a first stage, the parties assign precincts

to (proto-)districts, exactly like in our model. In a second stage, each party

is randomly assigned half of the (proto-)districts, and chooses how to split its

precincts into two districts (that then vote for one representative each in every

election).

A party that makes this second stage choice in a replica proto-district can

now choose, for example to maximize the probability of winning both districts (by

distributing both types of precincts equally to both districts), or to maximize the

chances of winning at least one of the two districts (by putting as many as possible

of its strong precincts into one district). By following the latter strategy in all of

its second-stage protodistricts, a party may be able to guarantee itself one-quarter

(i.e., one-half of one-half) of districts even if they lose the popular vote. However,

neither choice will affect the party’s probability of winning an overall legislative

majority, as the overall critical state remains ω∗.

Communities of interest and geography. As is standard in the formal liter-

ature on gerrymandering, we do not impose geographic restrictions on the players.

In a partisan redistricting system, there are two justifications for requiring

contiguity of districts. First, and probably most importantly, the contiguity re-

quirement can be interpreted in the current system as a second-best constraint

to the gerrymanderer’s power that is supposed to limit his ability to implement

a biased map. Our mechanism directly gets rid of that power to distort election

outcomes, so that indirect constraints for that purpose are unnecessary.

Second, other things equal, both voters and representatives/parties have an

interest that voters are located closely to each other as this facilitates the provision

of constituency service by the representatives. Observe, however, that contiguity

of districts, by itself, is neither necessary nor sufficient for this objective being

satisfied – the average distance between voters can be large in contiguous districts,

and small in non-contiguous ones. See Figure 8 for an example.19

Furthermore, while it is desirable to keep “communities of interest” together

19The fact that contiguity does not guarantee that voters live close to each other is vividly

illustrated by many districts under the current redistricting system. For example, district TX-35

during the 2012-2020 time period stretched all the way from San Antonio to Austin even though

both of these metropolitan areas have more than enough population to fill several complete

congressional districts.
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Figure 8: Contiguous districts (left) may have a larger distance between their

voters than non-contiguous districts (right)

in districts, any type of geographic constraint on drawing districts helps with this

objective only as far as the “community of interest” is defined in a geographic way.

While neighbors often share some interests, say with respect to local safety and

infrastructure, it is not clear that this is necessarily the most important way in

which communities of interest can be defined. For example, groups that are defined

by their ethnic origin, their religion or their socio-economic position might also be

relevant communities that parties might want to combine. Without geographic

constraints, it is easier to create districts for non-geographic communities.

For example, suppose that the Democratic party wants to create a district

in which a heavily Democratic-voting, but not very concentrated minority group

(such as Asian Americans) has the opportunity to select a candidate. With geo-

graphic contiguity constraints, this is very difficult to achieve,20 while it would be

easy if precincts can be combined without contiguity restrictions.

This said, suppose that parties, in addition to caring about their chance of

winning in future elections, also prefer districts where voters live geographically

close to each other. In this case, one could easily consider the outcome of the

redistricting game only as a default endowment. If both parties agree, then re-

assignments of precincts (for example, to generate more compact districts) can

certainly be permitted.

More than two precinct types. Our model assumes two types of precincts,

one Democratic-leaning (type 1) and one Republican-leaning (type 2). We now

discuss informally how our model extends to a setting with more precinct types.

Specifically, consider what happens in a multi-round assignment game, if there

20In the entire U.S., there are currently only 2 Asian majority districts, and 2 more in which

there is an Asian plurality. This is less than 1 percent of Congressional districts, while Asians

make up about 6 percent of the U.S. population.

28



is a type M precinct that is more Republican than a type 1 precinct, but less so

than a type 2 precinct. For concreteness, suppose the percentages of type 1, M

and 2 districts are 20, 50 and 30, respectively.

It is strategically intuitive that, in early rounds, each party wants to first

assign the moderate type M precincts while holding on the more extreme type 1

and 2 precincts. To see this, suppose to the contrary that, in the first L/2 rounds,

Democrats used up all their type 1 and 2 precincts (and distributed them uniformly

to districts), while Republicans disposed of all their type M precincts. In the

remaining second half of the game, Democrats are then forced to assign only

type M districts (these are the only ones they have left), while Republicans can

pack all their type 1 precincts into 40 percent of districts, and all their type 2

precincts in the remaining 60 percent of districts. Thus, 60 percent of districts

have the following composition that is more Republican than the electorate at-

large: 10 percent type 1, 50 percent type M, and 40 percent type 2.21

Intuitively, disposing of type M precinct early and holding on to type 1 and

2 precincts allows a party to react in later rounds, or to tilt the playing field in

their favor if the other party is effectively out of ammunition.

If both parties adhere to this intuitive prescription, then they will uniformly

dispose of all their type M districts in the first L/2 rounds. At this stage, both

parties have only two types of precincts left in their arsenal, and the remaining

game therefore proceeds exactly as described in the main part of this paper.

21Conversely, consider what happens if we switch which party plays the stupid strategy in the

first half. Again, Republicans have on effective choice in the second half of assignment rounds,

and Democrats can assign (2/3 type 1, 1/3 type 2) precincts to 60 percent of districts, and only

type 2 districts to the remaining 40 percent of districts, resulting in 60 percent of districts that

are more Democratic-leaning than the electorate at-large.
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A Online-Appendix (not for publication)

A.1 Proof of Theorem 1

1. Observe first that, if there are N districts in which the percentage of type 1

precincts is at least β1, then D wins these districts whenever ω < ω̂, and

thus, together with the at-large district, a legislative majority.

SupposeD chooses σ1
kD = 2β1 for all districts k ∈ {N+1, N+2, . . . , 2N} and

σ1
kD = 0 for all districts k ∈ {1, 2, . . . , N}. Such a strategy is feasible because
1
2N

∑2N
k=1 σ

1
kP = β1. Furthermore, since σ1

kR ≥ 0, the percentage of type 1

precincts is at least 2β1+0
2

= β1 for all districts k ∈ {N + 1, N + 2, . . . , 2N}.
Thus, this strategy guarantees ΠD(σD, σR | ω < ω̂) = 1.

2. Without loss of generality, let the σ1
kD be ordered in a weakly increasing way

such that k < k′ implies σ1
kD ≤ σ1

k′D. Thus, districts 1 to N have a (weakly)

lower percentage of type 1 precincts than districts N +1 to 2N . We want to

show that R can choose σ1
kR ≥ 0 for districts 1 to N such that

σ1
kD+σ1

kR

2
≤ β1.

Assume, to the contrary, that there is a feasible strategy for D such that this

is not possible for R because the percentage of Democrat-leaning precincts in

at least some of these districts is so high after D’s move that
σ1
kD+0

2
> β1, or,

equivalently, it must be true that, at least in district N , we have σ1
ND > 2β1.

Because the districts are ordered in an increasing way, for all districts k > N ,

we have σ1
kD ≥ σ1

ND > 2β1. Thus, summing over all districts, we have

1

2N

2N∑
k=1

σ1
kD >

N + 1

2N
2β1 =

N + 1

N
β1 > β1.

Thus, D’s strategy is not feasible, which gives the desired contradiction. ■

A.2 Proof of Proposition 1

Without loss of generality, assume that the districts are numbered in weakly de-

creasing order of their type-1 precinct content after the Democrat’s move, and

that, to the contrary of the statement, σ1
D,N < 2β1, either because Democrats

allocated some type-1 precincts to the other half of districts (σ1
D,N+1 > 0), and/or

because they allocated more than 2β1 to some district k < N . We prove that Re-

publicans can respond so that they reduce the total share of Democratic-leaning
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type 1 precincts to less than β1 in N +1 districts. As a consequence, Republicans

win N + 1 districts whenever ω < ω̂ for ω̂ < ω∗.

Consider the following strategy by the Republicans: Assign as many type 1

precincts as possible to district 1, i.e. σ1
R,1 = min {1, 2Nβ1}. If type 1 precincts

are left, i.e. if 1 < 2Nβ1 assign as many precincts as possible to district 2, σ1
R,1 =

min {1, 2Nβ1 − 1}, proceed analogously until district N − 1 is reached. If 2Nβ1 >

N − 1, then further type 1 districts are left. Those are allocated to the district

with rank 2N , possibly until the fraction of type 1 of districts is equal to the one

in district 2N − 1. If a common level is reached, and further precincts are left,

they are spread evenly over districts 2N and 2N − 1 until the fraction of type 1

precincts is equal to the one in district 2N − 2. If type 1 precincts are left, they

are spread evenly over districts 2N , 2N − 1, and 2N − 2 until the fraction of type

1 precincts is equal to the one in district 2N − 3, and so on.

Now suppose that after the Republicans move, the mass of type 1 precincts in

districtN is at least 2β1. Then the same is true for all districts with an index larger

than N . Moreover, for all districts smaller than N the mass of type 1 precincts is

strictly larger than 2β1, since the Republicans assigned a mass of 1 > 2β1.

Consequently, the total mass of type precincts that have been assigned is

bounded from below by

N − 1 + (N + 1)2β1 > 4Nβ1 ,

which is a contradiction, since, by the parties’ budget constraints,

2N∑
k=1

σ1
kD +

2N∑
k=1

σ1
kR = 4Nβ1 .

■

A.3 Proof of Theorem 2

We first show that party D has a strategy that guarantees a majority in the

legislature whenever ω < ω∗. Consider the following strategy for party D: In all

rounds l, choose σ1
kDl = 0, for k ≤ N and σ1

kDl =
2β1

L
, for all k > N . We seek to

show that, with this strategy, for all σR and for all districts with an index k > N ,

(σ1
kD + σ1

kR) v(t1, ω) + (σ2
kD + σ2

kR) v(t2, ω) <
1

2
, (3)
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whenever ω < ω̂. Since the left-hand side of equation (3) decreases in ω, it suffices

to show that

(σ1
kD + σ1

kR) v(t1, ω̂) + (σ2
kD + σ2

kR) v(t2, ω̂) ≤ 1

2
, (4)

or, equivalently, that

σ1
kD + σ1

kR ≥
2v(t2, ω̂)− 1

2

v(t2, ω̂)− v(t1, ω̂)
= β1 , (5)

where the inequality in the left part of (5) follows from (4) upon using that σ2
kD =

1−σ1
kD and σ2

kR = 1−σ1
kR. The equality in the right part of (5) then follows from

(1).

After L rounds, the total mass of precincts assigned by the two parties to any

one district k equals 2. Under party D’s strategy the share of type 1 precincts is

in any district with an index k > N is bounded from below by β1. To see this

note that

σ1
kD + σ1

kR ≥
L 2β1

L

2
= β1 .

In the remainder of the proof we show that party R has a strategy that guar-

antees a majority in the legislature whenever ω > ω∗.

A.3.1 On the ranking of districts

Ordering districts. If the game were to end after round l, party R would win

district k in state ω when
2∑

j=1

v(tj, ω)
L

2l

(
slDk(tj) + slRk(tj)

)
>

1

2
, (6)

where slDk(tj) :=
∑l

l′=1 σDkl′(tj) and slRk(tj) :=
∑l

l′=1 σRkl′(tj) are the stocks of

type tj precincts who have been assigned by partiesD and R, respectively, over the

first l rounds of play. To interpret this inequality, note that L
2l
(slDk(tj) + slRk(tj))

is the share of type tj precincts among those precincts who have been assigned

to district k in the first l periods.22 Thus, if ω is such that the above inequality

holds, then party R has majority support in district k after round l.

22Each party assigns to every district a mass of 1
L precincts in every round. Since each party

moves in every round, the total mass of assigned districts is 2
L per round. After l rounds, every

district has been assigned a mass of 2
L l precincts in total. Consequently,

slDk(tj) + slRk(tj)
2
L l

=
L

2l

(
slDk(tj) + slRk(tj)

)
is the percentage share of type tj precincts in district k after l rounds of play.
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Let slk(tj) := slDk(tj) + slRk(tj). We define a rank order of districts according

to their republican vote share after l rounds of play. Thus, the rank of district k

is higher than the rank of district k′ if, for some ω,

2∑
j=1

v(tj, ω)
L

2l
slk(tj) ≥

2∑
j=1

v(tj, ω)
L

2l
slk′(tj) . (7)

Using that, in any district the shares of type 1 and type 2 precincts add up to 1,

inequality (7) can equivalently be written as

v(t1, ω) +
L
2l
slk(t2)

(
v(t2, ω)− v(t1, ω)

)
≥ v(t1, ω) +

L
2l
slk′(t2)

(
v(t2, ω)− v(t1, ω)

)
.

(8)

or, more simply, as

slk(t2) ≥ slk′(t2) .

Thus, ordering districts according to their republican vote share is equivalent to

ordering them according to the share of type 2 precincts. Also, the Republican

vote share in any district k is, for every state ω, a monotonic function of the mass

of type 2 precincts.

Order preserving assignments. Assume without loss of generality that after

l rounds of play district 1 has a weakly lower Republican vote share than district

2, that district 2 has a weakly lower Republican vote share than district 3 and so

on. District 2N is then among those with a maximal republican vote share. Now

consider round l + 1. Suppose that party R moves first in round l + 1. It then

assigns a mass of 1
L
precincts to any district k. Thus, for any district k,

2∑
j=1

σkRl+1(tj) =
1

L
.

This move of R induces a new order of districts according to

slk(t2) + σkRl+1(t2) .

Let rσ(k) ∈ {1, . . . , 2N} be the new rank of the district with initial rank k.

Lemma 2 Given a move σRl+1 = (σkRl+1)
2N
k=1 of party R in round l + 1 with a

resulting ranking k 7→ rσ(k) according to the republican vote share, there is an

alternative move σ′
Rl+1 = (σ′

kRl+1)
2N
k=1 of party R with the following properties:
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i) The alternative move uses the same precinct types: For every j,

2N∑
k=1

σkRl+1(tj) =
2N∑
k=1

σ′
kRl+1(tj) .

ii) The alternative move preserves the old ranking; formally, it induces a new

ranking k 7→ rσ′(k) so that rσ′(k) = k, for every k.

iii) The republican vote share in the district with rank N+1 under the alternative

move σ′
Rl+1 is at least as high as in the district with rank N + 1 under the

initial move.

Proof of Lemma 2. Suppose there is some district with initial rank k′ that has

rank k in the ranking induced by σRl+1 = (σkRl+1)
2N
k=1; i.e. k

′ = r−1(k). The mass

of type t2 precincts after R’s move under σRl+1 = (σkRl+1)
2N
k=1 is given by

slk′(t2) + σk′Rl+1(t2) .

We now choose σ′
kRl+1(t2) so that

σ′
kRl+1(t2) = max

{
0, slk′(t2) + σk′Rl+1(t2)− slk(t2)

}
.

Proceeding in the same way for all k implies that

slk(t2) + σ′
kRl+1(t2) ≥ slr−1(k)(t2) + σr−1(k)Rl+1(t2) .

The mass of type t2 precincts used by σ′
Rl+1 = (σ′

kRl+1)
2N
k=1 across all districts

is such that
2N∑
k=1

σ′
kRl+1(t2) =

2N∑
k=1

max
{
0, slr−1(k)(t2) + σr−1(k)Rl+1(t2)− slk(t2)

}
An upper bound is obtained under the assumption that

slr−1(k)(t2) + σr−1(k)Rl+1(t2)− slk(t2) > 0 ,

for all k, i.e. so that type t2 precincts have to be assigned to all districts. Therefore,∑2N
k=1 σ

′
kRl+1(t) ≤

∑2N
k=1 s

l
r−1(k)(t) + σr−1(k)Rl+1(t)− slk(t)

=
∑2N

k=1 s
l
r−1(k)(t)−

∑2N
k=1 s

l
k(t) +

∑2N
k=1 σr−1(k)Rl+1(t)

=
∑2N

k=1 σr−1(k)Rl+1(t) .

Thus, σ′
Rl+1 does not use more type t2 precincts than σRl+1, and it yields, in any

district, at least as type 2 precincts in total. If there is a strict inequality, i.e. if

σ′
Rl+1 use strictly less type t2 precincts than σRl+1, then those precincts can be

assigned to the districts in such a way that the initial ranking is preserved. □
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A.3.2 Proof of Lemma 1

A strategy for party R. In any round l, given a – for now exogenous – budget

of β1
Rl

2N
L

type t1-precincts to be assigned, proceed sequentially in the following

way – until the budget of type t1-precincts for that round is exhausted:

i) Add type t1-precincts to the lowest ranked district until the mass of t1-

precincts equals the mass in the district with the second lowest rank. From

then on, keep the mass in these two districts equal.

ii) Add type t1-precincts to the two lowest ranked districts until the mass of

t1-precincts equals the mass in the district with the third lowest rank. From

then on, keep the mass in these two districts equal.

iii) Proceed analogously for all districts with a rank smaller or equal N−2. From

then on, keep the mass in all these districts equal. Add t1-precincts to the

N − 1 lowest ranked districts until the mass of t1-precincts equals the mass

in the district with rank N . From then on, don’t add further t1-precincts to

one of the bottom N districts.

iv) Add t1-precincts to the top ranked district.

v) If there are still t1-precincts left in the budget after a mass of 1
L
t1-precincts

has been assigned to the top ranked district, add t1-precincts to the district

with the second highest rank, etc, then move to the district with the third

highest rank, etc.

vi) Stop when no further t1-precincts are left.

Note that, as an implication, R’s play in any round leaves the ranking of districts

unchanged.

A best response for party D. Consider a – for now exogenous – sequence of

budgets for party D’s play {β1
Dl}Ll=1. Note that since party R never affects the

ranking of districts, the ranking of districts in any round is entirely due to party

D. As argued above it entails no loss of generality to assume that party D’s moves

do neither affect the ranking of districts. This also implies that it is never optimal

to have a budget of partisan D precincts in some round that makes it necessary
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to assign D precincts to strictly more than N +1 districts. Thus, we may assume

that, for any round l,

β1
Dl

2N

L
≤ N + 1

L
,

or, equivalently,

βD
Dl ≤ 1

2
+

1

2N
.

Given some budget for moves in round l, the optimal strategy for party D is now

as follows:

i) Add type t1-precincts to the district with rank N until the mass of t1-

precincts equals the mass in the district with the rank N + 1. From then

on, keep the mass in these two districts equal.

ii) Add type t1-precincts to the two districts with ranks N and N +1 until the

mass of t1-precincts equals the mass in the district with rank N + 2. From

then on, keep the mass in these three districts equal.

iii) Proceed analogously for all districts with a rank larger or equal N +2, until

the budget of D precincts is exhausted.

Party R’s sequence of budgets. We now specify a particular sequence of

budgets for party R: As the first mover in the initial round, it does not assign

any type t1-precincts, β
1
R1 = 0. In any round l ≥ 2, and as long os this is feasible,

party R assigns as many t1-precincts as party D did in the previous round

β1
Rl+1 = β1

Dl .

This is clearly feasible in early rounds. If, however, party D keeps some type t1-

precincts for the last round so that β1
DL > 0, then party R will have to assign

an additional mass of β1
DL ≤ 2N

L
type t1-precincts somewhen in the game. Other-

wise party R would violate its overall budget constraint. Note that this quantity

vanishes for L → infty.

Thus, there is a subset of rounds L′ so that∑
l′∈L′

β1
Dl′ <

∑
l′∈L′

β1
Rl′+1 ≤

∑
l′∈L′

β1
Dl′ +

2N

L
.

and for l not in L′ we let

β1
Rl+1 = β1

Dl .
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Party R’s strategy has the following implication: Whenever party R moves, it

brings the mass of t1-precincts in the bottom N−1 districts to the level that party

D has generated for the district with rank N in the previous round. Moreover,

party R adds t1-precincts at most to the two top-ranked districts, and does not

assign any D precincts to districts with the ranks N,N + 1, . . . , 2N − 2.

To see this, first consider rounds 1 and 2:

� In round 1, party D assigns an equal mass of D precincts to N +1 districts.

� In round 2, party R fills the bottom N − 1 districts. It then has additional

t1-precincts left. According to party R’s strategy, as many t1-precincts as

possible are assigned to the district with the top rank 2N . If additional t1-

precincts are left, they go to the district with rank 2N−1 and then, possibly,

to the district with rank 2N − 2.

Now consider rounds 3 and 4:

� In round 3, party D’s best response stipulates to assign an equal mass of

t1-precincts to the districts with ranks N,N + 1, . . . , 2N − 2. Those are

N − 1 districts. Possibly, it also assigns t1-precincts to the three top ranked

districts.

� In round 4, party R fills the bottom N − 1 districts. It can do so by adding

to the districts in the bottom N − 1 exactly the amount of D precincts that

party D has added to the districts with ranks N,N +1, . . . , 2N −2 in round

3.

� If party D has previously added t1-precincts to the two top ranked districts,

then party R has additional t1-precincts left after the bottom 2N−2 districts

have been leveled. Again, by party R’s strategy, of these precincts as many

as possible are assigned to the district with the top rank 2N . If additional

t1-precincts are left, they go to the district with rank 2N − 1.

Completing the argument. Suppose first that, for all l,

βD
Rl+1 = βD

Dl .

The strategies of parties R and D described above then imply that after the last

move in round L, there is an equal mass of type t1-precincts for all districts with a
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rank smaller or equal to 2N − 2. The mass of these precincts is (weakly) larger in

the two top ranked districts. Now suppose that the percentage share of t1-precincts

in the district with rank N is strictly larger than β1. Equivalently, the total mass

of t1-precincts in that district exceeds 2 β1. Then, the mass of t1-precincts exceeds

2 β1 in all districts. Hence, the total mass of assigned t1-precincts is strictly larger

than 4N β1. But this is infeasible as the two parties’ total endowments with

partisan t1-precincts only sum to 4N β1. Thus, the assumption that party D can

generate N +1 districts with a percentage share of type t1-precincts strictly larger

than βD leads to a contradiction, and must be false.

Now suppose, there needs to be a subset of rounds L′ so that∑
l′∈L′

β1
Dl′ <

∑
l′∈L′

β1
Rl′+1 ≤

∑
l′∈L′

β1
Dl′ +

2N

L
.

For L sufficiently large, we can chose the number of such rounds equal to 2N , i.e.

#L′ = 2N . Party R can then satisfy its overall budget constraint by assigning,

for every round l′ ∈ L′, an additional mass of t1-precincts that is bounded from

above by 1
L
.

Then, party R’s moves in rounds l′ ∈ L′ may require to add type t1-precincts

to the three highest ranked districts, with the mass going to the district with

rank 2N − 2 being bounded from above by 1
L
. The strategies of parties R and

D described above then imply that after the last move in round L, there is an

equal mass of type t1-precincts for all districts with a rank smaller or equal to

2N − 3. The mass of these precincts is (weakly) larger in the three top ranked

districts. Again, the assumption that the percentage share of t1-precincts in the

district with rank N is strictly larger than β1 leads to a contradiction, and must

be false. □
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