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Abstract

A uniform price on Carbon is at the center of market-based approaches to cli-

mate policy. Actual climate policy, by contrast, has many sector-specific rules.

This paper studies the desirability of a uniform price on Carbon using tools from

the theory of taxation. It is found that a justification for a uniform price can be

given. It involves indifference with respect to the distributive consequences of cli-

mate policy, and it requires that a condition of proportional fiscal externalities is

met. If these conditions are not met, a deviation from a uniform price of Carbon

is desirable. Distributive considerations may imply that sectors whose output is

consumed mostly by “the poor” should contribute less to meeting the government’s

emission target, whereas sectors whose output is consumed mostly by “the rich”

should contribute more.
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1 Introduction

Proponents of a market-based approach to climate policy demand a uniform price on

CO2 emissions. With a “correct” price, i.e. one that reflects the social cost of carbon,

sector-specific rules are superfluous. They are even harmful because the same emission

reduction could be achieved at a lower cost to society. Actual climate policy, by contrast,

is a mix of sector specific green taxes, sector-specific cap-and-trade-systems and sector

specific regulation.1 For the proponents of the market-based approach, this plethora of

sector-specific rules appears as a political failure, an inability of the political process to

reach climate policy targets in an efficient way. Against this background, this paper

studies the desirability of a uniform price on Carbon using tools from the theory of

taxation. We analyze a model in which individuals differ in their incomes and in their

preferences for green versus brown consumption goods. Firms’ incentives to reduce the

emission intensity of their production depend on the CO2 prices they are facing. This

framework nests as special cases the Mirrleesian model of income taxation, Ramsey’s

model of sector-specific taxation and the partial equilibrium model that is often used to

justify the market-based approach. In the partial equilibrium model, the avoidance of

emissions is the only economic activity of firms and the market based approach implies

that avoidance activities are allocated across firms in an efficient way.

We clarify that there are somewhat restrictive conditions under which the market-

based approach is fully justified in the sense that any departure from it implies a viola-

tion of Pareto-efficiency. We then move away from these special cases and provide a more

general treatment. We first evaluate the market based approach under an assumption

of “distributive indifference”. Under this assumption, reaching a given emission target

in an efficient way is the only goal of climate policy. We provide sufficient conditions

for the desirability and also for the non-desirability of the market-based approach under

“distributive indifference”. We show, moreover, that sector specific rules and hence a

departure from the market-based approach can be desirable with concerns for the dis-

tributive consequences of climate policy. Therefore, the broad lesson from the analysis

in this paper is that a sector-specific approach to climate policy is as good or as bad as

the market-based approach: Under appropriate conditions (which are spelled out in the

formal analysis) both are justifiable and in both cases the justification requires an explicit

value judgment.

1To give examples, the European Union emission trading system (EU ETS) covers electricity and

heat generation, aluminium, cement, and steel works, amongst other sectors. The EU is planning to

introduce a separate emission trading system (EU ETS II) covering buildings and road transport. The

EU moreover has CO2 emission performance standards for cars and vans. In addition there are measures

at the national level. Germany, for instance, has green taxes covering fossil fuels and electricity. One

could go on.
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Sketch of the formal analysis. We consider an economy that has three sectors, one

produces an unspecific consumption good, one produces a green good and one produces

a brown good. The brown and the green good are imperfect substitutes. We think

of the brown and the green sector as potential targets for sector specific policies vis

à vis “the rest of the economy” which is represented by the sector that produces the

unspecific consumption good. In all sectors, price-taking firms operate with decreasing

returns to scale and realize inframarginal profits. Their production comes with emissions

and they can exert effort to reduce the emission intensity of their production. Individuals

receive labour income and differ in productive abilities, as in Mirrleesian models of income

taxation, and there is a non-linear tax on labour incomes. In addition, individuals differ in

their willingness to pay for green consumption goods. Thus, there is a joint distribution of

incomes and preferences for green goods. Individuals also own the firms in the economy

and differ in their share in the economy’s total profits. Some individuals mostly have

labour income, others mostly have “capital income”. Possibly, individuals also differ

in their portfolios, e.g. with some individuals having larger stakes in the brown sector,

and others having larger stakes in the green sector. The government’s policy choices

are constraint by the need to reach an economy-wide emission target. To reach the

target, firms in the unspecific sector, the green sector and the brown sector need to

reduce emissions. The analysis focusses on the question whether it is optimal to reach

the emission target with sector-specific rules such as sector-specific emission targets or

sector specific taxes. Alternatively, there is a price on emissions that is uniform across

sectors and, if anything, a uniform consumption tax. If that’s the case, we say that there

is a uniform price of Carbon.

The differences in the sources of income, in productive abilities and in the preferences

for brown versus green consumption goods imply that alternative policies that reach the

government’s emission target differ in their distributive implications. A central feature of

the model is the possibility of a conflict between “green redistribution” and “inequality-

reducing redistribution.” Individuals with a strong taste for the green consumption good

have a smaller CO2 footprint per dollar spent on consumption goods than individuals

with a weak taste for the green good. Therefore, a hypothetical redistribution of one unit

of income from the former to the latter would reduce the demand for emission-intensive

goods. If the preferences for green rather than brown goods are, moreover, positively

correlated with incomes than such redistribution tends to increase the disposable income

of “the rich” at the expense of the disposable income of “the poor.”

There are two special cases of this environment in which the market-based approach

is clearly desirable, in the sense that any departure from it implies a violation of Pareto-

efficiency. In the first special case, all individual characteristics – i.e. preferences for

brown versus green consumption goods, productive abilities and “capital incomes” –

are observable. In the second special case, productive abilities are the only source of

heterogeneity amongst individuals and, moreover, assumed to be private information.
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Hence, in the second case, all individuals are assumed to have the same consumption

preferences and to receive the same “capital incomes.” These benchmarks are derived

from a primal approach: Allocations are chosen so as to minimize overall emissions subject

to the requirements (i) of physical feasibility, (ii) to reach a predetermined profile of

utilities and (iii) of incentive compatibility when productive abilities are taken to be

private information.

The main part of the analysis takes a dual approach, however. At the heart of this

analysis is how market outcomes change when climate policy deviates from a uniform price

on Carbon. Sector-specific taxes drive a wedge between consumer and producer prices

and there are numerous general equilibrium effects. For instance, labour incomes depend

not just on the properties of the income tax, but also on consumer prices which change in

response to changes of emission or commodity taxes. Also, a tax that increases consumer

prices in one sector shifts the excess demand curves in other sectors with repercussions

for the whole vector of equilibrium prices. Thereby it also affects the firms’ profits and

tax revenue. A key step in the analysis is to show that competitive equilibria exist and

are unique and lend themselves to a comparative statics analysis. This provides the basis

for studying the welfare implications of departures from a uniform price on Carbon.

Sufficient conditions for existence and uniqueness are derived under the assumptions

that (i) consumption utility comes from a Cobb-Douglas aggregation of the demands

for the unspecific consumption good and for a “second good”, and that (ii) the “second

good” is a CES aggregation of the demands for the green and the brown good. A possible

interpretation is that the second good is “mobility” and that mobility is generated with

a mix of brown alternatives (airline travel, commuting by car) and green alternatives

(railway travel, public transport). When the overall budget share of the second good is

not too large, then also the income effects associated with policies that specifically target

the brown or the green sector are not too large. This special case, moreover, lends itself

to an explicit analysis of tax incidence in the presence of general equilibrium effects.

The test for the desirability of the market based approach then proceeds as follows:

We consider a competitive equilibrium that results under uniform commodity taxation

and with a price for emissions that is uniform across sectors. We then employ a generic

social welfare function to evaluate deviations from this policy. Admissible deviations

are those that respect the government’s emission target. The welfare implications of

an admissible deviation are captured by a sufficient statistics formula that highlights

efficiency losses from sector-specific taxes, but also distributive effects across individuals

with different consumption preferences or different sources and levels of “capital income.”

The extent to which these distributive effects are desirable then depends inter alia on the

specification of welfare weights. When there are no welfare gains from a deviation, we

say that a uniform price of Carbon is desirable. Otherwise, it is not.
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The main result. We show that a uniform price on Carbon is desirable when two

conditions are fulfilled. First, a condition of distributive indifference. It holds when

the welfare weights are the same across all individuals, irrespectively of whether their

“capital” or labour incomes are high or low, and irrespective of whether or not they

spend much of their disposable income on green or brown goods. Second, a condition of

proportional fiscal externalities. The term fiscal externalities has been coined to describe

the impact that the use of one tax instrument has on the revenue that is generated with

some other instrument. The condition of proportional fiscal externalities holds when, for

all the policy instruments that we study, the ratio of their impact on income tax revenue

and the revenue from carbon pricing is the same. Note that these conditions are different

in nature. The first condition involves an explicit value judgment. The second condition

is a hypothesis on how the economy works. If both conditions are fulfilled, a uniform

price on Carbon is justified. When the second condition is not satisfied, a second-best

logic implies that a move away from uniform Carbon pricing is desirable.

Together the two conditions are sufficient for a justification of a uniform price of

Carbon. This leads to the question whether they are necessary. The answer is “no”.

First, as explained above, when individuals differ only in productive abilities, a uniform

Carbon price is desirable even when the welfare weights of “the poor” are higher than the

welfare weights of “the rich.” Second, even if the two conditions are not satisfied, it is

conceivable that an empirical application of the sufficient statistics test reveals negligible

gains from a reform towards a more sector-specific climate policy. Whether or not this

is the case turns the question of this paper into a pragmatic one: are magnitudes such

that a deviation from the uniform Carbon prices is really paying off? This is then no

longer a question on the principles of climate policy. While these principles are the focus

the paper, the sufficient statistics formulas that it derives could be used in an empirical

application to provide an answer also to the pragmatic question.

Equity considerations. We also evaluate deviations from a uniform price on Carbon

with welfare weights that are decreasing in disposable income. We first proceed under the

assumption of proportional fiscal externalities, so that, with distributive indifference, there

would no be no reason to deviate from a uniform price. With a distributive objective, by

contrast, it is desirable to move away from a uniform Carbon tax so that there are higher

taxes on a good that is consumed mostly by “the rich” (irrespectively of whether that is

the green or the brown good) and subsidies on a good consumed mostly by “the poor”.

We show, moreover, that this conclusion can also be obtained when fiscal externalities

are not proportional. More specifically, when the welfare gains from a reform of taxes on

the unspecific good are small, then, again, it is desirable to move towards higher taxes on

goods consumed mostly by “the rich” and towards subsidies for goods consumed mostly

“the poor.”

These results are obtained from a simplified version of the general setup that facilitates
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a comparison to the Ramsey model of taxation in it most elementary form: There are

constant returns to scale technologies and, as a consequence, taxes are fully borne by

consumers. In the basic Ramsey model, the question is which sector should contribute

how much to meeting the government’s revenue target.2 Here, by contrast, the question

is which sector should contribute how much to meeting the government’s emission target.

The above results imply that – relative to the benchmark of reaching emission targets

with a uniform Carbon tax – sectors that produce goods mostly consumed by “the poor”

should contribute less to meeting the government’s emission target, whereas sectors that

produce goods mostly consumed by “the rich” should contribute more.

Outline. The next section discusses related strands of the literature. The formal model

is introduced in Section 3. Section 4 presents benchmark results for specific versions of

the general setup. The main results of the paper can be found in Section 5. The last

section contains concluding remarks. Formal proofs are relegated to the Appendix.

2 Related literature

This paper combines ideas from different strands of the literatures. The literature on

the regulation of externalities often times uses a partial equilibrium model. The seminal

paper by Weitzman (1974) is a prominent example. Firms differ in their marginal costs

of abatement. There is a social benefit of abatement that is independent of which firm

is incurring the costs of abatement. With a tax on emissions or prices for tradable

emission permits, firms will expand abatement up to the point where the marginal costs

of abatement are equal to the tax or the price of an emission permit. If the tax or the

price is equal to the marginal social benefit of abatement, a first-best outcome results. In

particular, marginal costs of abatement are equalized across firms, with the implication

that the economy-wide costs of abatement are minimized. In this framework, the case for

a uniform price on Carbon is compelling. Treating firms in different sectors differently

can only make things worse.

In the partial equilibrium model, avoiding emissions is the firms’ only activity. This

paper enriches this framework. Firms are producing consumption goods and emissions

are a by-product. The firms’ incentives to avoid emissions therefore depend not only

on how high green taxes or prices for emission permits are. They also depend on the

demand for their final product. In the model introduced below, an increase in demand

goes together with an increased effort to avoid emissions. Therefore also the commodity

tax system – which affects the incentives of consumers to buy one good or another –

matters for climate policy. The comparative statics properties of this framework are

broadly consistent with the patterns documented in Känzig (2023). At the firm level,

employment, output and emissions are all decreasing when carbon prices go up.

2The answer to this question is known as the inverse elasticities rule.
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General equilibrium effects are a topic of its own in the analysis of tax incidence. A

seminal paper that focussed on corporate taxation is Harberger (1962). More recently,

Sachs et al. (2020) focussed on general equilibrium effects in the labour market. Their

analysis uses a primal approach, i.e. the analysis focusses on allocations that respect

incentive and resource constraints. This paper uses the dual approach and, hence, there

is a need to run the analysis through market-clearing conditions that pin down an equi-

librium price vector that depends on the specification of climate policy. The benefit is

that we obtain an explicit characterization of how producer and consumer prices are af-

fected by a change of climate policy and also of how the surplus that is generated in the

various markets of the economy is affected. This gives a general equilibrium analogue

to Harberger’s famous measure of the economic surplus that is lost when distortionary

taxes are used, Harberger’s triangle.

Bovenberg and Goulder (1996) present a second best analysis of optimal environ-

mental taxes. Their setting also gives rise to general equilibrium effects. An important

difference to the analysis in this paper is that Bovenberg and Goulder analyze a model

with a representative household. The same is true for the analyses of optimal dynamic

Carbon taxes by Golosov et al. (2014b) and Barrage (2019). Thus, these frameworks

are not suited to studying the distributive implications of climate policy. Douenne et al.

(2024) study climate policy in dynamic quantitative model with heterogenous households

and with an explicit focus on its distributive implications. In their framework the as-

sumptions underlying the famous Atkinson-Stiglitz result, discussed in more detail below,

are satisfied so that there is no rationale for a deviation from a uniform price of Carbon.

Distributive issues are also important in the analysis of optimal environmental taxes

by Cremer et al. (1998), Jacobs and de Mooij (2015), Jacobs and van der Ploeg (2019) and,

more recently, Pai and Strack (2022) and Ahlvik et al. (2024). Their settings, however, do

not give rise to general equilibrium effects. Another difference to the analysis in this paper

is that, here, there is no attempt to characterize an optimal externality and an optimal

Pigouvian correction. Instead, there is an exogenous emission target of the government.

This is motivated by the Paris climate agreement that led to Nationally determined

contributions (NDAs). We ask what such national emission targets, if they were really

binding, would imply for the design of climate policy. Neither do we proceed under the

assumption that those NDAs are optimally set, nor do we exclude this possibility.

The alternative to a market-based approach to climate policy is one that is sector-

specific. Optimal sector specific taxes are characterized in Ramsey models of taxation,

albeit with the objective to generate a predetermined level of tax revenue. Here, by

contrast, the focus is on reaching a target level of emissions. Diamond (1975) has used

the Ramsey approach to characterize a welfare-maximizing commodity tax system, taking

into account that some goods are consumed in larger proportion by those with a low

marginal utility of income (“the rich”) and others by those with a high marginal utility

of income (“the poor”). As is well known, the Ramsey approach has been criticized by
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Atkinson and Stiglitz (1976). When consumption preferences are such that all individuals

would spend a given amount of disposable income in the same way, then any tax system

that involves differential commodity taxes is dominated by one that relies only on income

taxation.3 A related result is proven in this paper. A uniform price of Carbon dominates

any sector-specific approach under the following assumption: Individuals differ only in

their productive abilities as in Mirrleesian models of income taxation. As an implication,

there is then no heterogeneity in preferences for green versus brown consumption goods

and, moreover, all individuals receive the same “capital income”, or, equivalently, all

profits are taxed at 100 percent. This result is interesting as a benchmark, but the

underlying assumptions are not empirically plausible. Hellwig and Werquin (2023) trace

out some of the empirical implications that are implied by the assumptions of Atkinson-

Stiglitz and show that they are inconsistent with actual consumption data. Ferey et al.

(2022) present optimal tax formulas for non-linear income and consumption taxes that

apply when the Atkinson-Stiglitz assumptions are not satisfied.

This paper follows Saez (2002) in the modelling of consumption spending: Utility

is additively separable between consumption utility on the one hand and effort costs

on the other. Moreover, the consumption utility part may be different for different

individuals. While this nests the Atkinson-Stiglitz specification as a special case, it allows

for heterogeneity in consumption preferences; for instance, it allows for the possibility that

incomes and preferences for green rather than brown consumption goods are positively

correlated.4

While this paper uses arguments and techniques from the literature on optimal taxa-

tion, there are still notable differences to the workhorse models in this literature. Here,

the government is constraint by the need to reach an emission target. Also, firms make

profits and make an effort to reduce emissions. These choices depend on the properties of

the tax system. Firm profits are a source of income for some, but not for all households.

Thus, there is inequality in incomes beyond the inequality in labour incomes. A differ-

ence between this paper and much of the related literature in public finance is, moreover,

that there is no attempt to characterize an optimal tax system. Instead, the question

is whether a particular benchmark, a uniform price on Carbon, is desirable. Thus, the

focus is on the welfare-implications of deviating from uniform taxes or uniform prices for

emission permits. There is no derivation of optimal tax formulas.

Much the literature on optimal commodity taxes uses a mechanism design approach.

This makes it possible to characterize optimal tax systems without ad hoc assumptions

on the functional form of an optimal tax schedule. It detaches the normative theory,

however, from its positive counterpart. There is then no explicit characterization of

how market prices and quantities respond to changes of the tax system. This paper

3See Laroque (2005) for a simple proof and Doligalski et al. (2023) for a generalization of the argument.
4It implies, however, that Engel curves are linear. For an analysis of optimal policy with non-linear

Engel curves, see Jacobs and van der Ploeg (2019).
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uses the dual approach and therefore contains such a characterization. It then looks at

perturbations of climate policy starting from the competitive equilibrium allocation that

results under a market-based approach to climate polices. Perturbation arguments are

frequently used in the analysis of non-linear income tax systems, see Piketty (1997), Saez

(2001), Golosov et al. (2014a) for important references. A contribution of this paper is

to bring this approach to the analysis of climate policy.

3 The model

3.1 Households

Preferences. There is a unit mass of individuals or households. Individuals have pref-

erences that are represented by a utility function

u(xc, χ(βxg, xb))− k(yl, ω) .

The consumption utility u depends on two arguments, the quantity consumed of the

unspecific consumption good xc, and a subutility χ which results from the combination

of green and brown consumption goods, xg and xb. The brown and the green good

are assumed to be imperfect substitutes. As an example, think of xg as “kilometers

travelled by train”, of xb as “kilometers travelled by plane” and of χ as the subutility

from travelling. The function χ depends on a parameter β so that the willingness to pay

for the green good is increasing in β. We assume that possible values of β belong to

a bounded interval [β, β̄] with β > 0. The functions u and χ are both assumed to be

homothetic. In parts of the analysis – in particular, for the proof of equilibrium existence

and uniqueness – we invoke the functional form assumptions

u(xc, χ(βxg, xb)) = x1−ν
c χ(βxg, xb)

ν , (1)

and

χ(βxg, xb) =
(
βx1−εχ

g + x
1−εχ
b

) 1
1−εχ

. (2)

We denote by yl an individual’s labour supply, k is an effort cost function, and ω is a

measure of productive abilities that affects the marginal effort costs. We assume that the

cross-derivative k12 is negative so that higher ω-types have lower marginal effort costs.

Otherwise, k is assumed to satisfy the usual Inada conditions.

Budget constraint. We denote the vector of consumer prices by q = (qc, qg, qb). The

corresponding producer prices are denoted by pc ,pg and pb. Commodity taxes drive a

wedge between consumer and producer prices so that

qc = (1 + tc) pc qg = (1 + tg) pg and qb = (1 + tb) pb .
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We are, inter alia, interested in the desirability of differential commodity taxation. Thus,

we consider the possibility to tax green and brown consumption at rates that are different

from tc. When individuals supply yl units of labour, they realize a gross labour income

of pw yl, where pw is the wage rate. Labour income is taxed according to a non-linear

income tax schedule: Tl : pw yl 7→ Tl(pw yl). The tax schedule Tl is assumed to be twice

continuously differentiable. Possibly, individuals also realize “capital income” from the

shares they hold in the economy’s firms. We write s = (sc, sg, sb) for a generic portfolio

and Π = (Πc,Πg,Πb)
′ for the column vector that list the profits realized in the different

sectors in the economy. A generic “capital income” can then be written as the scalar

product s Π. The government redistributes net tax revenues R in a lump-sum fashion.

Possibly, this revenue is generated by taxes on CO2 emissions, discussed in more detail

below. Taking all this into account an individual’s budget constraint reads as

qc xc + qg xg + qb xb ≤ pw yl − Tl(pw yl) + s ΠE +RE . (3)

When individuals choose labour supply and consumption demand they hold expectations

about the profits and the tax revenue that will contribute to their disposable income, as

indicated by the superscript E. When we formally state the definition of an equilibrium

below, we will add the requirement that these expectations are correct.

Utility maximization. Individuals choose x = (xc, xg, xb) and y to maximize utility

subject to the budget constraint in (3). It will prove useful to decompose this problem

into an inner and an outer problem. The inner problem is to maximize u(xc, χ(βxg, xb))

for a given level of disposable income c. Hence, the budget constraint for the inner

problem is

qc xc + qg xg + qb xb ≤ c .

The solution x∗ = (x∗
c , x

∗
g, x

∗
b) to this problem depends on the prices of consumption goods

q = (qc, qg, qb), the preference parameter β, and the disposable income c. The indirect

utility function v is defined by

v(c, β, q) = u(x∗
c(c, β, q), χ(βx

∗
g(c, β, q), x

∗
b(c, β, q))) .

The outer problem is to choose c and y to maximize

v(c, β, q)− k(y, ω)

subject to

c = pw yl − Tl(pw yl) + s ΠE +RE

Let θ = (β, ω, s) be a shorthand for an individual’s type. The solution to the outer

problem can be written as c∗(θ,ΠE,RE, q, pw, Tl) and y∗l (θ,Π
E,RE, q, pw, Tl). Individual

demand for the various consumption goods is obtained by inserting c∗(θ,ΠE,RE, q, pw, Tl)

for c in x∗
c(β, c, q), x

∗
g(β, c, q) and x∗

b(β, c, q).
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Comparative statics of individual choices. With u homothetic the inner problem

can be written as: Choose zc = xc

c
, zg = xg

c
and zb = xb

c
to maximize c u(zc, χ(zg, zb))

subject to

qc zn + qg zg + qb zb ≤ 1 . (4)

The optimal choices of z = (zn, zg, zb) then depend only on the consumer prices q and

the preference parameter β. Indirect utility is therefore given by

v(c, β, q) = c u(z∗c (β, q), χ(z
∗
g(β, q), z

∗
b (β, q))) =: c ṽ(β, q) . (5)

We henceforth refer to ṽ(β, q) as the marginal utility of disposable income. The following

Lemma (that we state without proof) gives implications of equation (5).

Lemma 1 Suppose that pw yl − Tl(pw yl) is a non-decreasing function of yl.

i) The marginal utility of disposable income is constant:

vc(c, β, q) = ṽ(β, q) and vcc(c, β, q) = 0 ,

where vc and vcc denote, respectively, the first and the second derivative of the

indirect utility function with respect to the level of disposable income.

ii) The utility-maximizing labour supply y∗l does not depend on sc, sg, sb, Π
E and RE.

iii) The marginal utility of disposable income is increasing in β and decreasing in the

consumer prices qc, qg, and qb.

iv) The utility-maximizing level of disposable income c∗ and y∗l are non-decreasing func-

tions of β and non-increasing functions of qc, qg, and qb.

v) c∗ and y∗l are non-decreasing functions of ω.

Thus, the “capital income” that individuals realize and the tax revenues that the gov-

ernment might redistribute are without consequence for individual labour supply. Still

there are income effects. If an individual’s disposable income goes up, the consumption

of all goods scales up.5 Put differently, the composition of the consumption basket re-

mains the same as individuals get poorer or richer. Only the size of the basket changes.

Heterogeneity in the composition of the basket is then only due to heterogeneity in the

preference for green consumption goods, parameterized by β. Higher values of β imply

a higher marginal utility of disposable income. This increases earnings incentives. Thus,

ceteris paribus, individuals with a higher taste for green goods do not earn less than peo-

ple with a higher taste for brown goods. By the same logic, higher consumer prices lower

5As is well known, with homothetic preferences, Engel curves – describing how the demand for various

consumption goods varies with disposable income– are linear.
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the marginal utility of disposable income and thus reduce earnings incentives. Finally,

as in Mirrleesian models of income taxation, earnings incentives increase in productive

abilities, so that both disposable income and labour earnings are non-decreasing functions

of ω.

An implication of the Lemma is that, ceteris paribus, the (hypothetical) redistribution

of one dollar from a low β person to a high β person would reduce the demand for the

brown good and increase the demand for the green good: The marginal CO2 footprint,

i.e. the footprint per unit of disposable income, of a high β-type is lower than the marginal

CO2 footprint of a low β-type. At the same time, it would involve redistribution from a

low income person to a high income person.

Aggregate labour supply, Aggregate consumption demand. Let Φθ be the cdf

that describes the joint distribution of productive abilities ω, preferences for green con-

sumption β and “capital incomes” s. Aggregate labour supply can then be written as

Yl(Π
E,RE, q, pw, Tl) = Eθ

[
y∗l (θ,Π

E,RE, q, pw, Tl)
]
,

where the operator Eθ indicates the computation of an expectation using the distribution

Φθ. We define the aggregate demand for the different consumption goods analogously.

Henceforth Xc(Π
E,RE, q, pw, Tl), Xg(Π

E,RE, q, pw, Tl) and Xb(Π
E,RE, q, pw, Tl) denote,

respectively, aggregate demand for the unspecific consumption good, the green and the

brown good.

3.2 Firms

There are three sectors in the economy, indexed by j ∈ {c, g, b}, where c stands for the

sector producing the unspecific consumption good, g stands for the green sector and b

for the brown sector. The firms in any one sector j produce the sector’s final output

good, using labour l as the only input. In addition, they can invest resources r to reduce

the emission intensity of their production. Firms differ in the cost of the investment

that is needed to reduce the emission intensity of their production. The heterogeneity of

firms in terms of their abatement costs is important for justifications of a uniform price

on Carbon. The logic is that a uniform price is efficient in that it gives firms with low

abatement costs incentives to cut emissions, whereas firms with high abatement costs pay

the price of carbon.

Profit-maximization. The profit-maximization problem of a generic firm in sector j

is to choose l and r to maximize

pj α fj(l)− pw l − tje

(
ej0 − aj(r)

)
αfj(l)− pc γ r , with aj(0) = 0.

We now explain the various terms that enter this expression. A firm in sector j, sells

goods at a price pj to the market. The production function fj is assumed to satisfy the
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usual Inada conditions. We will sometimes refer to is an iso-elastic production function

fj(l) =
1

1− 1
σj

l
1− 1

σj

where σj is the elasticity of substitution for firms in sector j. Firms in a given sector j

are assumed to differ in their factor productivity α and we denote by Φj
α the cdf that

describes the cross-section distribution of α in sector j. The wage bill of a firm that hires

l units of labour is pwl.

Emissions of CO2 are a byproduct of production. The parameter ej0 gives the emission

intensity of a firm in sector j if it does nothing – as captured by the subscript 0 – to avoid

emissions. The possibility of emission avoidance is captured by the abatement function

aj. It is non-negative, increasing in r and concave. It is bounded from above by ej0 and

satisfies the Inada conditions. The more resources r are devoted to emission avoidance,

the lower are the emissions ej0−aj(r) per unit of output. Emissions in sector j are taxed

at rate tje. From the firm’s perspective, the tax rate tje can equivalently be interpreted

as a price for an emission permit. In this interpretation, a firm combines two factors of

production, labour and emission permits, in the production of its final output good. Thus,

in the given setting, the classical question on the desirability of production efficiency6 can

be posed as the question whether an optimal policy should distort the relative prices of

labour inputs and emission permits away from some first-best benchmark. Below, we will

get to the question what an appropriate first best benchmark is in this case.

The parameter γ is a measure of how many resources a firm needs to invest to achieve

a given level of emissions reduction. Firms with high γ have a high cost of emission

avoidance. We denote by Φj
γ the cdf that describes the cross-section distribution of γ

in sector j. The cdf Φj describes the joint distribution of α and γ in sector j. We

treat the unspecific consumption good as a multi-purpose good that can be used both

for consumption and for investments into emission avoidance. Thus, a firm that wants

to reduce its emission intensity by aj(r) needs to spend γ r.

A firm’s decision how much labour to hire and hence how much to produce and its

decision how much to invest into emission avoidance are interdependent. Consider the

first order conditions that characterize the profit maximizing choices l∗ and r∗. The first

order condition for the choice of labour inputs is(
pj − tje(ej0 − aj(r

∗))
)
α f ′

j( l
∗) = pw , (6)

and the first order condition for emission avoidance is

pc γ

a′j(r
∗) α fj(l∗)

= tje . (7)

These are two equations in two unknowns. In the absence of emissions taxes, the first

order condition in (6) is the familiar condition that the value of the marginal product

6See the production efficiency theorem by Diamond and Mirrlees (1971) and, for a more recent

treatment, Doligalski et al. (2023).
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of labour is equal to the wage rate. With an emissions tax, the value pj is reduced by

the emission costs that come with an expansion of employment and production. These

costs are lower the more the firm invests into emission avoidance. Thus, a higher level of

r∗ goes together with a higher level of l∗. The first order condition in (7) also gives rise

to a complementarity between output and employment on the one hand and emission

avoidance on the other. It has, on the left hand side, the marginal cost of avoiding

one unit of emissions and, on the right hand side, the price of an emission permit, or

equivalently, the taxes that can be saved when one unit of emissions is avoided. An

inspection of (7) shows that a higher level of l∗ reduces the marginal cost of avoidance.

Hence, firms who opt for a larger scale of production also devote more resources to the

avoidance of emissions.

Comparative statics of firm behavior: Output, Employment, Investment and

Emissions. To understand how form behavior changes when taxes and prices change

it is useful to decompose the firm’s profit-maximization problem into an inner and an

outer problem. For the inner problem, the employment level l is taken as given and the

firm chooses r to maximize

−tje(ej0 − aj(r)) αfj(l)− pc γ r

The solution to this problem is denoted by r∗(l, pc, tje, γ). It is straightforward to verify

that r∗ is increasing in l and tje and decreasing in pc and γ. The outer problem then is

to choose l to maximize

pj α fj(l)− pwl − tje (ej0 − aj(r
∗(l, ·))) αfj(l))− pc γ r∗(l, ·) .

We denote the solution to this problem by l∗(pj, pw, pc, tje, γ, α). It is straightforward to

verify that l∗ is increasing in pj and α and decreasing in pw. The complementarity of the

investment and the labour choice implies, moreover, that l∗ is decreasing in pc and γ, as

r∗ is decreasing in these variables.

Lemma 2 Let fj(l) =
1

1− 1
σj

l
1− 1

σj . Denote profit-maximizing emissions by

e∗
j(pj, pw, pc, tje, γ, α) :=

(
ej0 − a(r∗(l∗(·), ·))

)
α fj(l

∗(·)) .

The function e∗
j has the same comparative statics properties as the function l∗: It is

increasing in pj and α and decreasing in pw and tje. It is decreasing in pc and γ.

Thus, essentially, at the level of an individual firm, the comparative statics of emissions,

output, employment and investment all have the same sign. Anything that makes the

firm expand output, employment and investment also implies more emissions. Anything

that makes the firm reduce emissions goes together with a down-scaling of all its economic

activities.
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These comparative statics results can be related to discussions on whether the “green

transformation” of the economy – the change of technologies so that production processes

become cleaner – can be a source of economic growth. Through the lens of the model, the

answer is “no” if the comparison is to a benchmark economy that has emissions which

are too high. A change of policy that brings down emissions will then also bring down

output, employment and investments into greener technologies. The answer is “yes” if

the comparison is to a benchmark economy that has to cut emissions while operating with

fixed technologies. The possibility to invest then implies that output and employment

are higher than they would otherwise be.

What distinguishes the green sector from the brown sector? So far the sector

names “unspecific”, “green” and “brown” have been labels with no meaning. There are

different conceivable ways to distinguish sectors according to how dirty they are. For

instance, if for any given r,

eb0 − ab(r) > ec0 − ac(r) > eg0 − ag(r) ,

then, emissions per unit of output are largest in the brown sector and smallest in the green

sector. An alternative is to order them according to their marginal cost of avoidance. If

for any given α, γ, l and r,

γ

a′b(r) α fb(l)
>

γ

a′c(r) α fc(l)
>

γ

a′g(r) α fg(l)
,

then the marginal avoidance costs are lowest in the green sector and highest in the brown

sector. The analysis in this paper does not presume that it is possible to order sectors in

this way, but it is consistent with such a possibility. The only assumption that will be

used in the formal analysis below is that

eb0 > ec0 > eg0 .

Aggregation. For later use in the analysis of competitive equilibria, we define labour

demand, goods supply and the demand for emission permits both at the sector and

the aggregate level. We start with individual firm behavior. The choices of a firm

in sector j depend on its characteristics θj = (α, γ), the prices pj = (pj, pw, pc) it is

facing and the sector specific tax tje. We denote, respectively, by l∗(θj, pj, pw, pc, tje) and

r∗(θj, pj, pw, pc, tje) the firm’s labour demand and the resources that it invests to avoid

emissions. The firm’s supply of good j is then given by

y∗j (θj, p
j, tje) = αfj(l

∗(θj, p
j, tje))

and its emissions are equal to

e∗
j(θj, p

j, tje) =
(
ej0 − aj(r

∗(θj, p
j, tje))

)
y∗j (θj, p

j, tje) ,
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where

γ r∗(θj, p
j, tje)

is the firm’s abatement effort, measured in expenditures for the unspecific consumption

good. Profits are then given by

πj(θj, p
j, tje) = pj y

∗
j (θj, p

j, tje)− pw l∗(θj, p
j, tje)

−pc γ r∗(θj, p
j, tje)− tje e∗(θj, p

j, tje) .

Labour demand, goods supply, emissions and profits at the sector level. Let

Φj be the cdf that represents the distribution of firm characteristics in sector j. Total

labour demand by firms in sector j is denoted by

Lj(p
j, tje) = Ej

[
l∗(θj, p

j, tje)
]
.

Analogously we define by Yj(p
j, pc, tje) the sector’s goods supply, by Ej(pj, pc, tje) the

sector’s demand for emission permits and by Rj(p
j, pc, tje) the sector’s demand for the

unspecific consumption good. Profits in sector j are denoted by Πj(p
j, pc, tje).

Aggregate labour demand and the aggregate demand for emission permits.

Let p = (pc, pg, pb, pw) be the economy’s producer price system. Let pg = (pg, pc, pw)

and pb = (pb, pc, pw) be the set of prices that are relevant for firms in the green and the

brown sector. Analogously, we define pc = (pc, pw). Aggregate labour demand can then

be written as

L(p, te) = Lc(p
c, tce) + Lg(p

g, tge) + Lb(p
b, tbe)

where te = (tce, tbe, tge) is the collection of sector-specific emissions taxes. Analogously,

we denote the overall demand for emission permits by E(p, te), the resources devoted to

the greening of technologies by R(p, te) and by

Π(p, te) =
(
Πc(p

c, tce),Πg(p
g, tge),Πb(p

b, tbe)
)

the vector of sectoral profits.

3.3 Government

Overall tax policy consists of collection of taxes that appear in the individuals’ budget

constraints (tc, tb.tg, Tl) and the emission taxes te = (tce, tbe, tge) that affect the choices

of firms. Differential commodity taxation is reflected in the possibility to tax green

and brown consumption goods at rates that differ from tc. Sector-specific taxation is

captured by the possibility to tax CO2 emissions at sector-specific rates. We use T =

15



(tc, tb.tg, Tl, te) as a shorthand for overall tax policy. We assume that there is a national

emission target Ē

E(p, te) ≤ Ē . (8)

and that the government considers only policies which reach this target.7 Tax revenue,

of any, is rebated lump sum. Given a tax policy, a price system, and expectations about

tax revenues and profits ΠE and RE, aggregate tax revenue R(p, T ) is given by

R(p, T ) = tc pc Xc(Π
E,RE, q, pw, Tl)

+ tg pg Xg(Π
E,RE, q, pw, Tl)

+ tb pb Xb(Π
E,RE, q, pw, Tl)

+ Eθ

[
Tl(pw y∗l (θ,Π

E,RE, q, pw, Tl))
]

+
∑

j∈{c,b,g} tje Ej(pj, tje) .

(9)

By the following Lemma, there is one and only one level of expected tax revenue RE

that is “correct”, i.e. consistent with the way in which actual tax revenue depends on

expected tax revenue. The proof follows from an application of Brouwer’s fixed point

theorem.

Lemma 3 Suppose that there is an upper bound R̄ on the tax revenue that can be col-

lected. Suppose that all consumption goods are normal goods. Then, for given prices p,

tax policy T and expected profits ΠE, there is one and only level of tax revenue so that

R(p, T ) = RE.

3.4 Equilibrium

Given a tax policy T , a price system p = (pc, pg, pb, pw) is an equilibrium price system if

the following conditions are met: The labour market clears,

L(p, te) = Yl(Π
E,RE, q, pw, Tl) ,

the goods markets clear

Xc(Π
E,RE, q, pw, Tl) +R(p, te) = Yc(p

c, tce) ,

Xg(Π
E,RE, q, pw, Tl) = Yg(p

g, tge) ,

7In political practice, it is disputable whether national emission targets – such as those associated

with the Paris climate protocol – are really binding.
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and

Xb(Π
E,RE, q, pw, Tl) = Yb(p

b, tbe) ,

and expectations are correct

RE = R(p, T ) and ΠE = Π(p, te) ,

where R(p, T ) is defined in equation (9) and Π(p, te) is the vector that lists aggregate

profits in the different sectors of the economy.

Lemma 4 If the goods markets clear and expectations are correct, then the labour market

clears.

The lemma, which is simply a version of Walras’ law for the given economy, simplifies

the equilibrium characterization. If all goods markets clear and expectations are correct,

the labour market clears too, so that the equilibrium characterization can focus on the

goods market clearing conditions.

In the following we provide a proof of existence and uniqueness under the assumptions

that the consumption utility function u is Cobb-Douglas, i.e.

u(xc, χ(βxg, xb)) = x1−ν
c χ(βxg, xb)

ν .

and that the subutility χ gives rise to a constant elasticity of substitution,

χ(β, xg, xb) =
(
βx1−εχ

g + x
1−εχ
b

) 1
1−εχ

.

Proposition 1 Under these assumptions, the following is true: There exists ν̄ so that

for ν < ν̄, for any vector of tax rates, there is a unique equilibrium price vector.

The assumption that ν is small implies that labour market outcomes, disposable incomes

and earnings do not depend much on the prices of the green and the brown good. Under

these assumptions, the excess demand functions constructed in the proof of the Proposi-

tion have the property that they are monotonically decreasing in the “own” price, while

still depending, in a parametric way, on the prices of the other goods. The properties

of demand implied by the assumption of a constant elasticity of substitution then imply

the existence of a unique equilibrium price vector. More specifically, the formal argu-

ment in the proof proceeds as follows: We take the wage rate as the numeraire, so that

only the prices pc, pg and pb need to be determined in equilibrium. We then fix pb and

pc at arbitrary levels and show that there is unique price pg that clears the market for

the green good. As we vary pb, this partial equilibrium value of pg adjusts. So, there

is a possibility to vary both pb and pg while keeping the market for the green good in

partial equilibrium. We further observe that any variation that involves a higher/ lower

level of pb lowers/ increases excess demand in the market for the brown good. Thus, we
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can bring the market for the brown good into partial equilibrium, while maintaining the

partial equilibrium in the market for the green good.8 All this holds for arbitrary values

of pc. As a final step we bring pc to the level that clears the market for the unspecific

consumption good while adjusting pg and pb so that both the market for the green good

and the market for the brown good both remain in partial equilibrium. Ultimately we

have found a general equilibrium price vector in this way. The monotonicity of excess

demand functions in their “own” price implies, moreover, that this general equilibrium

price vector is unique.

Proposition 1 serves a modest purpose. It assures us that there is a way to specify

the primitives of the model so that equilibria exist and are unique. A more general

proof of existence and uniqueness does not seem to be available. By the Sonnenschein-

Mantel-Debreu theorem, excess demand functions have little structure in general. For an

exchange economy with two goods and CES consumer preferences a proof of existence and

uniqueness can be found in Mas-Colell et al. (1995). Proposition 1 extends this result

in various ways: There is production, and there are profits in equilibrium, there are

three rather than two consumption goods, there are linear taxes on both inputs (emission

permits) and outputs and there is a non-linear income tax.

Tax incidence: Comparative statics of equilibrium prices. The assumption

used to establish existence and uniqueness of equilibrium also imply that predictions

on whether equilibrium prices rise or fall in response to changes of taxes can be obtained

analytically. The problem in general is that there are three excess demand functions and

that the whole vector of equilibrium prices depends on all the policy variables collected

in T . Under the assumptions for Proposition 1, however, one can get at these the pre-

dictions by (i) treating pg and pb as fixed parameters in the excess demand function for

the unspecific consumption good and (ii) be treating disposable incomes and pc as fixed

in the excess demand functions for the green and the brown good.

Proposition 2

1. The equilibrium value of pc is decreasing in tc and increasing in tce. The equilibrium

value of qc is increasing in tc and tce.

2. The equilibrium values of pg, qg, pb and qg are increasing in tge and tbe.

3. The equilibrium value of pb is decreasing in tb and the equilibrium value of qb is

increasing in tb. The equilibrium values of pg and qg are increasing in tb.

4. The equilibrium value of pg is decreasing in tg and the equilibrium value of qg is

increasing in tg. The equilibrium values of pb and qb are increasing in tb.

8As shown in the proof of Proposition 1, for this to be possible the excess demand functions for the

green and the brown good need to satisfy a single crossing property. This single property is then shown

to hold for ν sufficiently small.
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If the government taxes emissions in the large sector more heavily (tce goes up), the

unspecific consumption good becomes more expensive for consumers and their marginal

utility of income goes down. Consequently, there is also a contraction of labour supply.

The same happens when the government taxes the sector’s output more heavily (tc goes

up.) There is a difference, however, in how producer prices react. When tce goes up,

production costs increase and there is less supply at given prices. To restore equilibrium,

producer prices have to increase. When tc goes up, there is less demand at given producer

prices. To restore equilibrium, producer prices have to fall. In any case, the comparative

statics results in previous sections on how individual consumers and firms respond to

price changes imply that output, employment, investment and emissions go down in the

large sector when either tc or tce goes up.

If the government raises the tax on the use of fossil fuels in the airline industry (i.e.

tbe goes up), but not in the railway industry (i.e. tge stays constant), then producer and

consumer prices both in the brown and in the green sector go up. Prices for flight tickets

increase because production has become more costly. This increases the demand for the

green substitute so that also the prices of train tickets go up. Consequently, employment,

investment and overall emissions go up in the railway-industry. The mirror image is that

employment, investment and overall emissions go down in the airline-industry.

Proposition 2 does not cover all effects of tax changes. First, with ν small, what

happens in the small markets for the brown and the green good doesn’t matter much for

the outcome of the large market for the unspecific good. The Proposition therefore does

not include the effects that changes of tg, tb, tge or tbe have on pc and qc. They effects are

close to zero anyway. Second, what happens in the large market has consequences in the

small markets for the brown and the green good. However, there are various channels

and overall effects are difficult to sign unless stronger assumptions are imposed. What

matters is the relative strength of effects on demand and supply in the green and the

brown sector.

Socially responsible consumers. Suppose that more and more individuals become

socially responsible consumers and use the train rather than the plane for short-distance

travel. How would this affect equilibrium prices? A conceivable formalization is as follows:

For every individual, β is replaced by h(κ)β, where h is some increasing function and κ

can be interpreted as an extra “kick” to the preferences for the green good. Equilibrium

prices then depend both on public policy T and the size of the kick κ. The following

Proposition clarifies how equilibrium prices respond to changes of κ.

Proposition 3

1. The equilibrium values of pg and qg are increasing in κ.

2. The equilibrium values of pb and qb are decreasing in κ.
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Thus, if more people use the train, train rides become more expensive and airline tickets

become cheaper. If squared with Lemma 2 this implies, moreover, that output in he

railway sector goes up with the consequence that there is an increased effort to reduce

the emission intensity of railway travel. By contrast, output in the airline industry goes

down, hence also the sector’s investments into abatement. Thus, a shift of preferences

towards green alternatives pushes incentives for emission avoidance in the green and the

brown sector in opposite directions: The green sector makes an effort to become even

greener. The brown sector makes less of an effort and therefore becomes even browner.

With a binding target level emissions, does it bring any good if consumers switch

to greener goods out of a sense of social responsibility? If they reduce their individual

carbon footprints, this does not imply that emissions go down overall, it just implies that

someone else will increase his or her carbon footprint.9 While this is true, the analysis

in this paper suggests that an increase of the demand for green goods is not without

consequence. The switch to green goods increases output, employment and investment

in the green sector. The same variables shrink in the brown sector. When the overall

demand for emissions falls as a consequence, then also the prices of emission permits or,

equivalently, corrective taxes can go down. This lowers the firms production costs, again

with positive implications for output and employment.

4 Benchmarks

4.1 First-best

Let there be a given utility profile U0 : θ 7→ U0(θ). We say that an allocation is first best

if it is physically feasible and reaches this utility profile with minimal emissions. Thus, a

first-best allocation solves the following problem: What has to be chosen are labour supply

yl : θ 7→ yl(θ) and consumption levels xc : θ 7→ xc(θ), xb : θ 7→ xb(θ) and xg : θ 7→ xg(θ) for

the different types of households. In addition, for every sector j ∈ {c, b, g} and every type

of firm θj = (αj, γj) in that sector, labour inputs and resources devoted to the abatement

of emissions need to be chosen. This is captured by the functions lj : θj 7→ lj(θj) and

rj : θj 7→ rj(θj). The objective is to minimize∑
j∈{c,b,g}

Ej =
∑

j∈{c,b,g}

Ej

[(
e0j − aj(rj(θj)

)
αjfj(lj(θj))

]
subject to the following constraints: First, the chosen allocation needs to reach utility

profile U0. Formally, for all θ,

u(xc(θ), χ(βxg(θ), xb(θ)))− k(y(θ), ω) = U0(θ) . (10)

9Herweg and Schmidt (2022) argue that this discourages socially responsible consumers from switching

to green alternatives, see Kaufmann et al. (2023) for a related discussion.
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Second, the labour used up in the production process is bounded from above by the

amount that households make available,∑
j∈{c,b,g}

Ej [lj(θj)] ≤ Eθ [y(θ)] . (11)

Third, aggregate consumption is bounded by the production sector’s (net) output of the

various goods. For the unspecific consumption good this requires that

Eω[xc(ω)] ≤ Ec[αcfc(lc(θc))]−
∑

j∈{c,b,g}

Ej[γjrj(θj)] . (12)

For the green and the brown good the constraints are, respectively,

Eω[xg(ω)] ≤ Eg[αgfg(lg(θg))] and Eω[xb(ω)] ≤ Eb[αbfb(lb(θb))] . (13)

Proposition 4 At a solution to a first-best problem:

i) The marginal costs of emission avoidance are equalized: For any j, k ∈ {c, g, b},
and any pair θj = (αj, γj) and θk = (αk, γk),

γj
a′j(rj(θj))αjfj(lj(θj))

=
γk

a′k(rk(θk))αkfk(lk(θk))
. (14)

ii) The marginal rates of substitution between any pair of consumption goods are equal-

ized across households.

iii) The marginal rates of substitution between consumption goods and effort costs are

equalized across households.

We omit a formal proof, which can be obtained with standard arguments from a La-

grangean approach. Upon relating the conditions that characterize a first-best allocation

to those that characterize a competitive equilibrium allocation we obtain the following

Corollary.

Corollary 1 With sector specific CO2 prices or differential commodity taxation or non-

linear income taxation, a competitive equilibrium allocation is not a first best-allocation.

As is well known, with private information on preferences or abilities, first best allocations

that involve redistribution in favor of “the poor” are typically not incentive-compatible.

First-best allocations that are incentive-compatible have distributive implications which

may be deemed problematic. This is the root of the equity-efficiency trade-off in the

Mirrleesian theory of optimal taxation. It is concerned with a second-best problem,

welfare-maximization over the set of incentive-compatible allocation. As we will now

see, when incentive compatibility constraints need to address only private information in

productive abilities, then every-second best allocation is compatible with a uniform price

of Carbon.
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4.2 Second-best with heterogeneity only in productive abilities

Assumption 1 Suppose that all individuals have the same preferences over consumption

goods, i.e. β is the same for all. Also suppose that all individuals have identical claims on

the profits generated in the economy, i.e. s is the same for all. Thus, individuals differ

only in their productive abilities ω.

Under Assumption 1, there is heterogeneity only in productive abilities. Labour earnings

and household consumption can therefore more simply be described as functions of ω,

rather than as functions of the triple θ = (θ, s, ω). When productive abilities are, more-

over, private information incentive compatibility constraints need to be respected. Let

U0 : ω 7→ U0(ω) be a given utility profile. Incentive compatibility requires that for every

pair ω and ω′ in the set of ability types Ω, we have

U(ω) ≥ u0(ω
′)− k(yl(ω

′), ω) , (15)

where u0 = ω 7→ u0(ω) is the profile of consumption utilities. The second-best problem is

otherwise as the first-best problem stated above; i.e. an allocation is chosen to minimize

total emissions subject to the constraints of physical feasibility and the requirement to

reach a given profile of utilities.

Proposition 5 Under Assumption 1, at a solution to a second-best problem:

i) The marginal costs of emission avoidance are equalized: For any j, k ∈ {c, g, b},
and any pair θj = (αj, γj) and θk = (αk, γk),

γj
a′j(rj(θj))αjfj(lj(θj))

=
γk

a′k(rk(θk))αkfk(lk(θk))
. (16)

ii) The marginal rates of substitution between any pair of consumption goods are equal-

ized across households.

Corollary 2 Under Assumption 1, a competitive equilibrium allocation with sector-specific

emission taxes or differential commodity taxation is not a second best-allocation.

Non-linear income taxation is no impediment for reaching a second-best outcome. While

a second-best outcome requires that marginal rates of substitution between consumption

goods are not distorted away from the marginal rates of transformation prevailing in

the production sector, the marginal rate of substitution between consumption utility and

effort costs can be distorted by a non-linear income tax. Second-best allocations under

Assumption 1 may therefore involve substantial redistribution.

Assumption 1 is interesting as a benchmark, but it is not empirically plausible. Em-

pirically, income and wealth are correlated and green tastes seem to be more prevalent

among “the rich.” Therefore, in the next section, we revisit the question on the desir-

ability of the market-based approach without imposing Assumption 1.
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5 A test for the desirability of a uniform price of

Carbon

The benchmark results of the previous section where obtained through a primal approach.

That is, allocations where chosen subject to feasibility and, possibly, incentive constraints.

With the primal approach, market prices are not explicitly modelled as functions of tax

policy. We now return to the competitive equilibria that were defined in Section 3 and

take a dual approach; i.e. we will study what a deviation from a uniform price of Carbon

implies for market prices and equilibrium quantities, including emissions.

Admissible deviations from the market-based approach. The test for the desir-

ability of the market-based approach then proceeds as follows: We consider a competitive

equilibrium with (i) uniform emissions taxes, (ii) uniform commodity taxes, (iii) an ar-

bitrary income tax schedule which are specified such that the emission target is reached.

We then consider deviations from uniform emission taxes and/ or uniform commodity

taxes and evaluate them with alternative social welfare functions. The evaluation focusses

on deviations that respect the emission target; i.e. we will consider only deviations to

policies T with the property that

E(p∗(T ), te) = Ē , (17)

where, here and henceforth, we suppress the dependence of endogenous variables on the

wage rate pw. By Walras’s law (recall Lemma 4), we can set pw = 1 without loss of

generality.

Measures of social welfare. An additive utilitarian social welfare measure is given

by

W = Eθ[g(θ) U(θ)] ,

where

U(θ) = u(xc(θ), χ(β, xg(θ), xb(θ)))− k(yl(θ), ω) .

is the utility realized by a household of type θ, and g : θ 7→ g(θ) specifies welfare weights

as a function of the individuals’ types.

As will become clear, in the given setting, generalized welfare weights, see Saez and

Stantcheva (2016), have an intuitive appeal. Assume that the welfare weights carry an

additional argument, the marginal utility of disposable income. Specifically, let

g(ṽ(β, q), θ) =
1

ṽ(β, q)
g̃(θ) .
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When used for policy evaluation, such weights imply that individuals with different pref-

erences for green vs brown consumption goods but an equal disposable income have the

same weight.

For later use, we introduce the following shorthands: For the social marginal utility

of disposable income of type θ we write

g(ṽ(β, q), θ) := g(ṽ(β, q), θ) ṽ(β, q) .

The population average of this quantity, sometimes also referred to as the marginal value

of public funds, is denoted by ḡ := Eθ[g(ṽ(·), θ)]. Finally, the social marginal utility of

income for the recipients of “capital income” from sector j is ḡΠj := Eθ[g(ṽ(·), θ) sj].

The test. The test now proceeds as follows: let τ1 ∈ {tc, tg, tb, tce, tge, tbe} and τ2 ∈
{tc, tg, tb, tce, tge, tbe} be two different tax rates. A policy change that respects the emission

target needs to satisfy

Eτ1dτ1 + Eτ2dτ2 = 0 or
dτ2
dτ1

= −Eτ1
Eτ2

,

where Eτ1 and Eτ2 are, respectively, total differentials. They give the marginal impact on

total emissions when the levels of the tax instruments τ1 and τ2 slightly increases.10 For

the sake of the argument, let dτ1 > 0 and dτ2 < 0. The welfare-implications of such a

policy change are positive if

Wτ1dτ1 + Wτ2dτ2 > 0

or, equivalently, if

Wτ1 − Wτ2

(
Eτ1
Eτ2

)
> 0 ,

where Wτ1 and Wτ2 are, respectively, total differentials of a given welfare measure.

Note that this test does not involve the solution of an optimal tax problem. There

still is a similarity. At a solution to an optimal tax problem with the requirement to

reach a given emission target, the ratio
Eτ1
Eτ2

has to be proportional to the ratio
Wτ1

Wτ2
.11

The test exploits the observation that a lack of proportionality gives us the possibility

to reach a higher level of welfare while respecting the emission target. The test can be

performed, however, without having to take on board regularity conditions which ensure

that a solution to an optimal tax problem is well defined. We only need to evaluate

deviations from a given competitive equilibrium allocation. In particular, we can proceed

with no need to discuss the thorny and somewhat esoteric issue what welfare weights

would look like at an optimal welfare-maximizing allocation.

10The total differential is the sum of a direct effect that a tax increase may have on emissions and of

an effect that comes from changes of equilibrium prices in response to the change of the tax rate.
11See part B of the Appendix for further remarks on necessary conditions for optimal policy design.
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Welfare implications of policy changes. The following Lemma is the key ingredient

for our ability to actually perform the test. It gives the welfare implications of policy

changes starting from an arbitrary competitive equilibrium allocation. This character-

ization of welfare implications takes the form of a sufficient statistics formula; that is,

welfare implications can be computed when market outcomes (prices and quantities) are

known, when estimates of the elasticities are available that capture how market outcomes

change when taxes change, and when welfare weights have been specified.

Proposition 6 For τ ∈ {tc, tb, tg, tce, tbe, tge},

Wτ = −
∑

j

dq∗j (T )

dτ
Cov(g(ṽ(·), θ), x∗

j(·))

+ ḡ
∑

j(q
∗
j (T )− p∗j(T ))X∗

jτ (·)

+dp∗c(T )
dτj

(
(ḡΠc − ḡ)Y ∗

c (·)−
∑

j(ḡΠj
− ḡ)Ej[γj r

∗
j (·)])

)
+

dp∗g(T )

dτ
(ḡΠg − ḡ)X∗

g (·) +
dp∗b (T )

dτ
(ḡΠb

− ḡ)X∗
b (·)

+ḡ Eθ[T
′
l (y

∗
l (·, θ))y∗lτ (·, θ)]

+ḡ
∑

j tje E∗
jτ (·)

+
∑

j I(τ = τje)(ḡ − ḡΠj
)E∗

j (·)

where X∗
cτ , X

∗
gτ and X∗

bτ are total differentials of equilibrium quantities, y∗lτ (·, θ) is the

total differential of equilibrium labour supply for an individual of type θ and E∗
jτ is the

total differential of equilibrium emissions in sector j.

The Proposition highlights that a change of taxes has distributive effects and it involves

efficiency losses. The distributive effects involve term that relates the social marginal

utility of income of a subset of individuals to the population average. Efficiency losses,

by contrast, are due to the changes of equilibrium quantities.

Distributive effects. More specifically, suppose that the consumer price of good j goes

up when some tax rate changes. When good j is mainly consumed by households with

a low social marginal utility of income, so that Cov(g(ṽ(·), θ), x∗
j(·)) < 0, then the fact

that these households have to pay more for their consumption tends to raise the welfare

measure. For instance, when there is a positive correlation of the taste for green goods,

as measured by β, and labour income, as measured by ω, and if welfare weights simply

depend on disposable income, then this covariance is positive for the brown consumption

good and negative for the green consumption good. The signs would be reversed with

welfare weights that are “green” in the sense that people with a higher share of the green
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good in their consumption basket receive more weight than people with a larger share of

the brown good.

Alternatively, suppose that the producer price of good j goes down. This tends to

increase welfare if those who receive “capital income” from sector j have a welfare weight

that is lower than the one of the average person. This is the case when there is a positive

correlation between “capital income”, as measured by sj, and labour income and when

welfare weights are monotonic in disposable income. Alternatively, with welfare weights

that are pro-business in the sense that people with “capital incomes” receive higher

weights than the average person, a reduction of producer prices and hence profit margins

tends to lower welfare.

The term ∑
j

I(τ = τje)(ḡ − ḡΠj
)E∗

j (·)

shows that the same logic applies to the evaluation of higher taxes on emissions. If the

business owners who have to pay these taxes receive below average weights, this is a plus

for welfare, otherwise it is a minus.

Efficiency losses. The term

ḡ
∑
j

(q∗j (T )− p∗j(T ))X∗
jτ (·)

is the general equilibrium analogue to Harberger’s famous triangle. Commodity taxes

drive a wedge between consumer and producer prices. Therefore they crowd out economic

transactions that would be mutually beneficial with lower taxes: X∗
jτ (·) is a measure of

the volume of transactions that are lost in the market for good j when taxes change and

q∗j (T )−p∗j(T ) is a per unit measure of the gains from trade that are lost as a consequence.

The term

ḡ
∑
j

tje E∗
jτ (·)

captures that the volume of emissions changes when taxes change. While a reduction of

emissions helps to reach the emissions target, it also implies a loss of tax revenue and

hence of welfare.

Finally, changes of the tax system affect consumer prices and thereby the marginal

utility of income. This affects earnings incentives on the labour market and hence the

tax revenue that comes through the taxation of labour incomes. This is what is picked

up by

ḡ Eθ[T
′
l (y

∗
l (·, θ))y∗lτ (·, θ)] .
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5.1 Sufficient conditions for the desirability of a uniform price

of Carbon

Proposition 6 is based on an arbitrary competitive equilibrium. We now specialize this

further and consider the competitive equilibrium that results when climate policy takes a

market-based approach. We assume that carbon taxes and commodity taxes are uniform.

Thus, there is a number t̄e, so that tje = t̄e, for all j. We also let tc = tg = tb = 0.12

Consequently, efficiency losses from commodity taxation vanish

ḡ
∑
j

(q∗j (T )− p∗j(T ))X∗
jτ (·) = 0 .

We also add a condition of distributive indifference: Welfare weights are the same for all

individuals; i.e. for all θ,

g(ṽ(β, q), θ) = ḡ .

If this condition holds, only aggregate disposable income matters for welfare. An ad-

ditional euro of disposable income in the hands of “the rich” is then as valuable as an

additional euro in the hands of “the poor”. Consequently, all distributive terms disappear

from Wτ and we are left with

Wτ = ḡ
(
Eθ[T

′
l (y

∗
l (·, θ))y∗lτ (·, θ)] + te E∗

τ (·)
)
,

where E∗
τ (·) =

∑
j E∗

jτ (·). Now suppose, for a moment, that there is no distortionary

income taxation so that T ′
l (y) = 0, for all levels of y. Under this assumption, we have

that

Wτ = ḡ te E∗
τ (·) ,

and the test for the desirability of the market-based approach yields

Wτ1 − Wτ2

(
Eτ1
Eτ2

)
= 0 .

Hence, there is no reason to deviate from the market-based approach.13 In the presence

of distortionary income taxation, however, we have that

Wτ1 − Wτ2

(
Eτ1
Eτ2

)
=

ḡ
(
Eθ[T

′
l (y

∗
l (·, θ))y∗lτ1(·, θ)]− Eθ[T

′
l (y

∗
l (·, θ))y∗lτ2(·, θ)]

(
Eτ1
Eτ2

))
.

12Consider the budget constraint of the inner problem: qcxc + qgxg + qbxb ≤ c. With uniform

commodity taxation – i.e. tc = tg = tb = t – this can be written as pcxc + pgxg + pbxb ≤ c
1+t where

c = pw yl − Tl(pw yl) + s ΠE +RE . Thus, upon adjusting Tl, s and ḡ we can reinterpret the status quo

as one that has no commodity taxation at all.
13In Ramsey models in which all taxes are constrained to be linear, it is without loss of generality to

assume that one good remains untaxed, and the untaxed good can be taken to be labour income, see e.g.

Salanié (2003). Hence, marginal income tax rates are equal to zero. Thus, our analysis implies that, in

such a model, there is no reason to deviate from a uniform price on Carbon. See part C of the Appendix

for further remarks on Ramsey models of taxation.
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Thus,

Wτ1 − Wτ2

(
Eτ1
Eτ2

)
= 0 (18)

only if

Eθ[T
′
l (y

∗
l (·, θ))y∗lτ1(·, θ)]

Eθ[T ′
l (y

∗
l (·, θ))y∗lτ2(·, θ)]

=
Eτ1
Eτ2

. (19)

Thus, to justify the market-based approach to climate policy, the various tax instruments

under consideration need to be such that (19) holds for any pair τ1, τ2. If this property

holds, we say for short that there are proportional fiscal externalities. The condition

can also be more concisely stated as follows: There is a number η, so that, for all τ ∈
{tc, tb, tg, tce, tbe, tge},

Eθ[T
′
l (y

∗
l (·, θ))y∗lτ (·, θ)]
Eτ

= η ,

We then have

Wτ = ḡ (t̄e + η) Eτ ,

for all τ , with the implication that (18) holds for all for any pair τ1, τ2. The following

Proposition summarizes the preceding discussion.

Proposition 7 Consider a competitive equilibrium induced by a market-based approach

to climate policy. With distributive indifference and proportional fiscal externalities there

are no welfare gains from deviating from a uniform price on Carbon.

With distributive indifference, climate policy is evaluated only from an efficiency point

of view. As shown above, if there is no distortionary income tax to begin with, then the

market based approach is fully justified. By contrast, if a distortionary income tax is

in place then deviations from a uniform price of Carbon become desirable unless fiscal

externalities are proportional. If fiscal externalities are not proportional, the desirability

of deviations follows from a second best logic in the spirit of Lipsey and Lancaster (1956).

The various tax instruments differ in their implications for income tax revenue. If con-

sumer prices change in the small sectors for the brown and the green good, this has less

of an impact on earnings incentives than a change of taxes in the large unspecific “rest

of the economy”. By the same logic, sector specific polices presumably have less of an

impact on overall emissions than, say, higher emissions taxes for the rest of the economy.

The condition of proportional fiscal externalities holds when the ratio of these effects is

the same for all tax instruments under consideration. When, by contrast, say, taxes in

the brown and the green good have an equally small impact on earnings incentives, but

differ in their impact on emissions, then it is desirable to have higher taxes in the sector

where the impact on emissions is smaller, and less revenue from corrective taxes is lost
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as a consequence. E.g suppose that general equilibrium effects of taxes on prices are

negligible,14 and that the green good has zero emissions. Then, the revenue from carbon

pricing is unaffected if taxes in the green sector go up. This then makes it desirable to

use these taxes more than others.

This is also related to the discussion about the double-dividend hypothesis.15 The

latter is concerned with a move from a status quo with an insufficient climate policy

to a new policy with a more appropriate climate policy. The obvious benefit of such

a policy change is the improved design of climate policy. If this climate policy change

generates additional revenue for the government (via green taxes or the sale of emission

certificates), there is the possibility of a revenue-neutral reform package that involves

lower taxes elsewhere. These lower taxes are the second benefit. Here, by contrast,

the move is from one climate policy mix that is appropriate – in the sense that the

government’s emission target is reached – to another one that is also appropriate. Under

distributive indifference, such a move comes with welfare gains if fiscal externalities are

not proportional.

Proposition 7 gives sufficient conditions for the desirability of a uniform price on

Carbon. This raises the question whether these conditions are also necessary. The answer

is “no.” By Proposition 5, with heterogeneity only in productive abilities, a uniform

price is desirable even when welfare weights for “the poor” are larger than the welfare

weights for the “rich.” Moreover, even when there is a non-degenerate joint distribution

of preferences for green consumption, “capital incomes” and labour incomes, an empirical

application of the sufficient statistics approach may bring the result that the welfare gains

of departing from the market-based approach are small. To illustrate this possibility, note

that we can write the welfare implication of a tax change as

Wτ = Wnet
τ + ḡ

∑
j

tje
dE∗

j (·)
dτ

,

where Wnet
τ is the welfare impact net of its impact on the level of emissions. Using this

notation, the condition for a desirability of moving away from a uniform price on Carbon

can also be written as

Wnet
τ1

−Wnet
τ2

(
Eτ1
Eτ2

)
> 0 .

It is logically possible that

Wnet
τ1

−Wnet
τ2

(
Eτ1
Eτ2

)
is (close to) zero even if Wnet

τ1
̸= 0 and Wnet

τ2
̸= 0. Whether or not this is the case can

only be answered by bringing the theory to data.

14Below, we spell out conditions under which this is the case.
15See Jacobs and de Mooij (2015) for a discussion of the various contributions to that literature.
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5.2 Equity considerations

We now depart form the assumption of distributive indifference and instead consider a

welfare objective with weights of the form

g(ṽ(β, q), θ) =
1

ṽ(β, q)
g̃(θ) ,

i.e. the welfare weights of individuals depend only on their disposable income. We assume,

moreover, that the weights are decreasing in disposable income. Again, we consider

the competitive equilibrium allocation that results with a uniform tax on emissions,

tce = tbe = tge =: te, and uniform commodity taxation tc = tb = tg = 0 . We then ask

whether a reform towards sector-specific taxes would be welfare-improving. Recall from

the previous analysis that such a move is desirable unless

Wnet
τ1

−Wnet
τ2

(
Eτ1
Eτ2

)
= 0 , (20)

holds for any pair τ1, τ2 ∈ {tce, tge, tbe, tc, tg, tb}.
In the following, we argue that one cannot generally expect condition (20) to be

satisfied. To make that point, we look at a special case of the more general model

developed in Section 2. Specifically, we assume that firms operate with constant returns

to scale technologies and fixed emission intensities, i.e. a firm in sector j choose labour

inputs l so as to maximize

pj l − pw l − tje ej0 l .

In a competitive equilibrium with numeraire pw = 1, producer prices are fixed and given

by

pj = 1 + tje ej0 . (21)

Moreover, firms make zero profits in equilibrium. Consequently, tax increases are fully

passed to consumers,

qj = (1 + tj)(1 + tje ej0) (22)

so that there are no general equilibrium effects of taxes on prices: Taxes on goods sold

by firms in sector j or taxes on emission permits demanded by firms in sector j affect

only the consumer price of good j and no other price.16 This setup can be interpreted

as a limit case of the model in Section 2: When production functions are close to linear

and marginal abatement cost functions very steep, then firms are close to operating with

constant returns to scale and fixed emission intensities. Under these assumptions the

analysis of welfare implications of tax policy changes simplifies considerably.

16Note that without emissions, so that ej0 = 0, for all j, producer prices would be fixed and equal to

1. This is the canonical setup in the theory of optimal commodity taxation.
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Lemma 5 Suppose that equilibrium profits are zero, that producer prices are given by

(21) and that consumer prices are given by (22). Then: for τ ∈ {tc, tb, tg, tce, tbe, tge},

Wτ = −
∑

j

dq∗j (T )

dτ
Cov(g(ṽ(·), θ), x∗

j(·))

+ ḡ
∑

j(q
∗
j (T )− p∗j(T ))X∗

jτ (·)

+ḡ Eθ[T
′
l (y

∗
l (·, θ))y∗lτ (·, θ)]

+ḡ
∑

j tje E∗
jτ (·) .

where

dq∗j (T )

dτ
=


1 + tje ej0, if τ = tj ,

(1 + tj) ej0, if τ = tje ,

0, else .

(23)

If we consider deviations from a policy with tce = tbe = tge =: te, and tc = tb = tg = 0,

this expression simplifies further and we are left with

Wτ = −
∑

j

dq∗j (T )

dτ
Cov(g(ṽ(·), θ), x∗

j(·))

+ḡ Eθ[T
′
l (y

∗
l (·, θ))y∗lτ (·, θ)]

+ḡ t̄e E∗
τ (·) .

(24)

Proposition 8 Suppose that producer prices are given by (21), that consumer prices are

given by (22) and that profits are zero in equilibrium. Consider the competitive equilibrium

allocation that results with a uniform price on Carbon and without differential commodity

taxation. Suppose that fiscal externalities are proportional. Consider two goods j, k ∈
{c, g, b} so that

Cov(g(·), x∗
k(·)) < 0 < Cov(g(·), x∗

j(·)) .

Welfare goes up when tke or tk is increased and when tje or tj is decreased.

The Proposition follows from the observation that, with proportional fiscal externalities,

Wnet
τ1

−Wnet
τ2

(
Eτ1
Eτ2

)
equals

−dq∗k
dτ1

Cov(g(·), x∗
k(·)) +

dq∗j
dτ2

Cov(g(·), x∗
j(·))

(
Eτ1
Eτ2

)
.

This expression is positive when, as we assumed, Cov(g(·), x∗
k(·)) < 0 < Cov(g(·), x∗

j(·)),
and τ1 is a tax that raises the consumer price for good k, whereas τ2 is a tax that raises
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the consumer price of good j. The interpretation is that good k is mostly consumed by

those with low welfare weights (“the rich”), that good j is mostly consumed by those

with high welfare weights (“the poor”) and that welfare goes up when taxes are increased

on the former and reduced on the latter.

Proposition 8 is based on the assumption that fiscal externalities are proportional. It

is complemented by the following Proposition which requires no such assumption. The

Proposition implies, moreover, that with heterogeneity only in productive abilities, but

not in preferences for green versus brown consumption goods, there is neither a case for

higher taxes on the brown good, nor for subsidies of the green good, thereby reproducing

the insight in Proposition 5 using the dual approach.

Proposition 9 Suppose that producer prices are given by (21), that consumer prices are

given by (22) and that profits are zero in equilibrium. Suppose that u and χ have the

functional forms specified in (1) and (2). Consider the competitive equilibrium allocation

that results under a market-based approach to climate policy.

1. Suppose that Wnet
τ = 0 for τ ∈ {tc, tce} and Cov(g(·), x∗

j(·)) < Cov(g(·), x∗
c(·)).

Then Wnet
τ > 0 for τ ∈ {tj, tje} and Wnet

τ < 0 for τ ∈ {t−j, t−je}.

2. Suppose that for all individuals β takes the same value, henceforth denoted by β̄.

Then, for any pair τ1, τ2 ∈ {tce, tge, tbe, tc, tg, tb}

sgn Wnet
τ1

= sgn Wnet
τ2

.

By part 1. of the Proposition, when the taxes on the unspecific consumption good are

(close to) optimal in the sense that the net welfare gains from higher taxes are close to

zero, then welfare goes up when taxes are increased on a good that is consumed to a

larger extent by “the rich”, irrespectively of whether that good is the green good or the

brown good. Therefore, a move towards subsidies for the brown good improves welfare

when “the poor” tend to have lower values of β.

As shown in Proposition 5, when there is heterogeneity only in productive abilities,

then any departure from the market-based approach implies an inefficiency: There is then

a possibility to improve the policy-mix in such a way that everyone benefits. How does this

relate to the analysis in this section? Suppose that climate policy follows the market-based

approach in the stats quo. The assumption that there is only heterogeneity in productive

abilities does not preclude the possibility to increase welfare, say, by increasing emissions

taxes on the brown good and decreasing emissions taxes on the unspecific consumption

good. Depending on the welfare measure and on fiscal externalities, such a reform can be

an improvement over the status quo. However, the existence of such a reform requires that

there is τ ∈ {tce, tge, tbe, tc, tg, tb} with Wnet
τ ̸= 0. Suppose for the sake of the argument

that Wnet
τ > 0, for some τ . Then by part 3. of Proposition 9, there is a reform that is

even better: Wnet
τ > 0, for some τ implies Wnet

τ > 0, for all τ . Thus, welfare goes up
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even more if all taxes are raised and the consumer prices of all goods go up. Raising all

consumer prices at the same time is however equivalent to an increase of the income tax.

Thus, when a move to sector-specific taxes is a welfare-improvement, then welfare can be

raised even more with an adjustment of the income tax.

6 Concluding remarks

This paper has shown that climate policy is confronted with an equity-efficiency trade-off.

A uniform price on carbon is efficient in the sense that it allows to reach national emission

targets at minimal costs. At the same time, deviations to a sector-specific climate policy

can be justified by distributive concerns. While such a deviation has an efficiency cost

it may improve social welfare. In the presence of non-linear income taxes, a second-

best logic may imply, moreover, that deviations from the market-based approach can be

justified by efficiency considerations.

A market-based approach to climate policy has advantages of simplicity and account-

ability. Those are not captured by the welfare analysis that is presented in this paper.

With a uniform price of carbon there is a one-to-one mapping between one policy instru-

ment and one policy goal. It is then very clear what needs to be done when emission

targets are missed. The price for carbon needs to go up.

Still, as suggested by the welfare analysis in this paper, the distributive implications

of such an approach may be perceived as unfair. Possibly this is an explanation for the

lack of political support and the protests that are spurred by plans for more ambitious

climate policies. Reaching emission targets in a politically feasible way may therefore

require a sector-specific approach. A more systematic analysis of the conditions under

which climate policy can attract majority support is a topic fur future research.
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A Proofs

Proof of Lemma 2

The first order condition of the outer problem can be rewritten as

(e0 − a(r))αf ′
j(l

∗) =
pj αf

′(l∗)− pw
tje

,

or, using that fj(l) =
1

1− 1
σj

l
1− 1

σj ,

(e0 − a(r))αfj(l
∗)
1− 1

σj

l∗
=

pj αfj(l
∗)

1− 1
σj

l∗
− pw

tje
.

Hence

e∗ =
pj αf(l

∗)− pwl
∗
(
1− 1

σj

)−1

tje

Note that e∗ is increasing in l∗: The derivative of the right hand side with respect to l∗

equals

1

tje

(
pjαf

′
j(l

∗)− pw

(
1− 1

σj

)−1
)

>
1

tje

(
pjαf

′
j(l

∗)− pw
)
> 0

Thus, emissions go up if (i) pj increases, (ii) pw decreases, or (iii) tje decreases. The direct

effect and the effect via l∗ have the same sign. All other parameters affect emissions only

via l∗. In any case, the effect on l∗ has the same sign as the effect on e∗. □

Proof of Lemma 3

Inserting R(p, T ) for RE in the right hand side of equation (9) turns this equation into

a fixed point equation that can also be written as

G(ρ) := ρ ,

where

G(ρ) = tc pc Xc(Π
E, ρ, q, pw, Tl)

+tg pg Xg(Π
E, ρ, q, pw, Tl)

+tb pb Xb(Π
E, ρ, q, pw, Tl)

+Eθ

[
Tl(pw y∗l (θ,Π

E, ρ, q, pw, TI))
]

+
∑

j∈{c,b,g} tje Ej(pj, tje) .
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Step 1. We first show that, for all ρ, G′(ρ) < 1. To see this, note that G(ρ) can also be

written as a sum of the tax revenue due to individuals and the sum of tax revenue due

to firms.

G(ρ) = GI(ρ) +GF ,

where

GF =
∑

j∈{c,b,g} tje Ej(pj, tje) .

does not depend on ρ and

GI(ρ) := tc pc Xc(Π
E, ρ, q, pw, Tl)

+tg pg Xg(Π
E, ρ, q, pw, Tl)

+tb pb Xb(Π
E, ρ, q, pw, Tl)

+Eθ

[
Tl(pw y∗l (θ,Π

E, ρ, q, pw, Tl))
]
.

can also be written as

GI(ρ) := Eθ

[
T (θ, ρ)

]
,

where

T (θ, ρ) = Tl(pw y∗l (θ,Π
E, ρ, q, pw, Tl)) +

∑
j=c,g,b

tj pj x
∗
j(β, c

∗(θ,ΠE, ρ, ·), q)

are the tax payments of a type θ-individual, interpreted as a function of exogenous tax

revenue ρ, holding fixed the economy’s price and tax system. From the individual’s

budget constraint we have that

C(ρ, θ) + T (θ, ρ) = I(θ, ρ) + ρ , (25)

where

I(θ, ρ) = pw y∗l (θ,Π
E, ρ, pw, q, Tl)− Tl(y

∗
l (θ,Π

E, ρ, pw, q, Tl)) + s Π(p, pw, te)

is the sum of the individual’s net labour and “capital income” and

C(ρ, θ) = pc x
∗
c(β, c

∗(θ,ΠE, ρ, ·), qx)

+pg x
∗
g(β, c

∗(θ,ΠE, ρ, ·), qx)

+pb x
∗
b(β, c

∗(θ,ΠE, ρ, ·), qx)
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are the individual’s net expenditures on consumption goods. Equation (25) implies that

Tρ(θ, ρ) = 1− Cρ(θ, ρ) + Iρ(θ, ρ) .

Form the assumption that all goods are normal goods it follows that Cρ(θ, ρ) > 0. The

fact that the marginal utility of disposable income is constant, see Lemma 1, can be

shown to imply that y∗l does not depend on ρ, with the consequence that Iρ(θ, ρ) = 0.

Thus, we have that

Tρ(θ, ρ) < 1 ,

and as a consequence

G′(ρ) = Eθ

[
Tρ(θ, ρ)

]
< 1 .

Step 2. Under the given assumptions G is a continuous function on a bounded domain

ρ ∈ [0, R̄]. By Brouwer’s fixed point theorem, there is a solution to the equation G(ρ) = ρ.

Step 3. It remains to be shown that this solution is unique. Step 1 implies that G(ρ)− ρ

is a decreasing function. Moreover G(ρ) ≥ 0, with G(0) = 0 indicating that taxes are

prohibitive so that no tax revenue is collected and G(0) > 0 indicating that there is

positive tax revenue even if none of that revenue is rebated lump sum and individuals

spend only their labour and “capital” incomes. If G(0) = 0 then ρ = 0 is the unique

solution to the fixed point equation. If G(0) > 0 there is a unique ρ > 0 solving the fixed

point equation G(ρ) = ρ. □

Proof of Lemma 4

The labour market clearing condition can be equivalently written as

pw
[
Yl(Π

E,RE, q, pw, Tl)− L(p, te)
]
= 0 ,

or, as

Eθ

[
pwy

∗
l (·)
]
− pw

∑
j

Ej

[
l∗(·)

]
= 0 .

Using the individuals’ budget constraints and the definition of profits, this can be equiv-

alently written as

Eθ

[
pc(1 + tc)x

∗
c(·) + pg(1 + tg)x

∗
g(·) + pb(1 + tb)x

∗
b(·) + Tl(pwy

∗
l (·))− sΠE −RE

]
−
∑

j Ej

[
pjαfj(l

∗(·))− tje e∗
j(·)− γr∗(·)− πj(·)

]
= 0 .
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This in turn is equivalent to

R−RE + Π− ΠE

+pc

[
Xc(Π

E,RE, q, pw, Tl) +R(p, te)− Yc(pc, pw, tce)
]

+pg

[
Xg(Π

E,RE, q, pw, Tl)− Yg(pg, pc, pw, tge)
]

+pb

[
Xb(Π

E,RE, q, pw, Tl)− Yb(pb, pc, pw, tbe)
]

= 0 .

□

A.1 Proof of Proposition 1

Choice of the numeraire. By Lemma 4, labour market clearing is implied when the

three goods markets clear. Thus, to prove existence and uniqueness we can focus without

loss of generality on the goods markets. There are four prices that enter the three goods-

market clearing conditions. Henceforth, and without loss of generality, we set the wage

rate pw equal to 1.

A.1.1 Firm Behavior and its implications for supply and demand

As explained above, the profit-maximization problem of a firm in sector j can be decom-

posed in an inner and an outer problem. The inner problem is to choose an investment

into emission avoidance r for a given level of employment l and hence a given level of

output. The outer problem then is to choose the level of labour demand. We recall this

decomposition here as it is useful to determine how the firms’ supply and its demand of

the unspecific consumption good depend on the economy’s price system.

The inner problem. Given l, choose r to maximize

−tje (ej0 − aj(r))αfj(l)− pc γ r

The solution to this problem is denoted by r∗(l, pc, tje, γ). It is straightforward to verify

that r∗ is increasing in l and tje and decreasing in pc and γ.

The outer problem. The outer problem is to choose l to maximize

pj α fj(l)− tje(ej0 − aj(r
∗(l, ·)))αfj(l)− pc γ r∗(l, ·) .

We denote the solution to this problem by l∗(pj, pc, tje, γ, α). It is straightforward to

verify that l∗ is increasing in pj. The complementarity of the investment and the labour

choice implies, moreover, that l∗ is decreasing in pc and γ, as r∗ is decreasing in these

variables.
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Implications. (i) Holding fixed pc, the supply in the green sector increases in pg and

the supply of the brown sector increases in pb. (ii) Every sector’s demand of the unspecific

consumption good for investment purposes decreases in pc. (iii) The net supply of the

unspecific consumption good (= supply minus own demand for investment purposes) is

increasing in pc.

A.1.2 Consumption demand with Coub Douglas and CES preferences

The inner problem. With Cobb Douglas and CES preferences, the inner problem

can be written as: Choose zc, zg and zb to maximize

z1−ν
c

(
β1−εχ
g + s

1−εχ
b

) ν
1−εχ

subject to

qc zc + qg zg + qb zb = 1 .

The solution is

Z∗
c (qc) =

1− ν

qc
, z∗g

(
β,

qb
qg

)
=

ν

qg
αg

(
β,

qb
qg

)
and Z∗

b

(
β,

qb
qg

)
=

ν

qb
αb

(
β,

qb
qg

)
,

where

αg

(
β,

qb
qg

)
:=

β
1
εχ

(
qb
qg

) 1−εχ
εχ

1 + β
1
εχ

(
qb
qg

) 1−εχ
εχ

and αb

(
β,

qb
qg

)
:= 1− αg

(
β,

qb
qg

)
.

Thus, a fraction 1−ν of disposable income is spent on the unspecific consumption good, a

fraction ν αg

(
β, qb

qg

)
is spent on the green consumption good and a fraction ν αg

(
β, qb

qg

)
is spent on the brown consumption good.

The indirect utility ṽ(β, q) associated with a solution to the inner problem is obtained

by inserting z∗c , z
∗
g and z∗b into the objective of the inner problem. It follows from Roy’s

identity that ṽ(β, q) is decreasing in qc, qg and qb.

The outer problem. The problem is to choose c and y to maximize

c ṽ(β, q)− k(yl, ω) s.t. c = yl − Tl(yl) + sΠE +RE .

Note that the utility maximizing earnings level does neither depend on ΠE nor on RE.

Thus, we can write y∗l (ṽ(β, q), ω, Tl) and

c∗(ṽ(β, q), ω, Tl, sΠ
E +RE) = nl(y

∗
l (ṽ(β, q), ω, Tl) + sΠE +RE,

where we refer to nl(yl) := yl − Tl(yl) as the net labour income function. Note that c∗ is

a decreasing function of ṽ and hence a decreasing function of qc, qg and qb.
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Consumption demand. Individual demand for the unspecific consumption good is

given by

x∗
c(·) =

1− ν

qc
c∗(·) .

Individual demand for the green good is given by

x∗
g(·) =

ν

qg
αg

(
β,

qb
qg

)
c∗(·) ,

and individual demand for the brown good is given by

x∗
b(·) =

ν

qb
αb

(
β,

qb
qg

)
c∗(·) .

Aggregate demand can therefore be written as

Xc(qc, qg, qb, ·) =
1− ν

qc
Eθ [c

∗(·)] ,

Xg(qc, qg, qb, ·) =
ν

qg
Eθ

[
αg

(
β,

qb
qg

)
c∗(·)

]
and

Xb(qc, qg, qb, ·) =
ν

qb
Eθ

[
αb

(
β,

qb
qg

)
c∗(·)

]
.

We define the corresponding excess demand functions as

Zc(pc, pg, pb, ·) := Xc((1 + tc)pc, (1 + tg)pg, (1 + tb)pb, ·)− Yc(pc, tce) ,

Zg(pc, pg, pb, ·) := Xg((1 + tc)pc, (1 + tg)pg, (1 + tb)pb, ·)− Yg(pg, pc, tge) ,

and

Zb(pc, pg, pb, ·) := Xb((1 + tc)pc, (1 + tg)pg, (1 + tb)pb, ·)− Yb(pb, pc, tge) .

A.1.3 Implications of ν “small”

It follows from Roy’s identity that, for any β,

∂ṽ(β, q)

∂qb
= −ṽ(β, q) Z∗

b

(
β,

qb
qg

)
and

∂ṽ(β, q)

∂qb
= −ṽ(β, q) Z∗

g

(
β,

qb
qg

)
With

z∗g

(
β,

qb
qg

)
=

ν

qg
αg

(
β,

qb
qg

)
and Z∗

b

(
β,

qb
qg

)
=

ν

qb
αb

(
β,

qb
qg

)
,
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it follows that

lim
ν→0

∂ṽ(β, q)

∂qb
= 0 and lim

ν→0

∂ṽ(β, q)

∂qb
= 0 . (26)

Using L’Hospital’s rule one can show, moreover, that, for all β,

lim
ν→0

ṽ(β, q) =
1

qc
. (27)

Thus, when the budget shares of the green and the brown good become small, then (i)

indirect utility no longer depends on the prices of these goods and (ii) their impact on

individual welfare vanishes.

Note that the solution to the outer problem c∗(·) depends continuously on ṽ(β, q), i.e.

on the marginal utility of income. Using the chain rule, a change of the prices for the

brown and the green good affect c∗(·) via

∂c∗(·)
∂ṽ(·)

∂ṽ(β, q)

∂qb

and

∂c∗(·)
∂ṽ(·)

∂ṽ(β, q)

∂qb

It follows from (26) that these expressions vanish as ν → 0. The following Lemma is

implied by these observations.

Lemma 6 Let ρc
∗
g (β, ·) be the elasticity of c∗(·) with respect to qg for an individual of

type β. Analogously, let ρc
∗

b (β, ·) be the elasticity of c∗ with respect to qb for an individual

of type β. For all β,

lim
ν→0

ρc
∗

g (β, ·) = 0 and lim
ν→0

ρc
∗

b (β, ·) = 0 (28)

As an implication also

lim
ν→0

ρC
∗

g (·) = 0 and lim
ν→0

ρC
∗

b (·) = 0 (29)

where ρC
∗

g and ρC
∗

b , are, respectively, the elasticities of C∗(·) := Eθ[c
∗(·)] with respect to

qg and qb. Furthermore, for j ∈ {b, g}

lim
ν→0

∂Zc(·)
∂pj

= 0 (30)

and

lim
ν→0

∂Xg(·)
∂pj

=
ν

qg
Eθ

[(
∂

∂pj
αg

(
β,

qb
qg

))
c∗(·)

]
(31)

and

lim
ν→0

∂Xb(·)
∂pj

=
ν

qg
Eθ

[(
∂

∂pj
αb

(
β,

qb
qg

))
c∗(·)

]
(32)
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Moreover,

lim
ν→0

c∗(ṽ(β, q), ω, Tl, sΠ
E +RE) = c∗

(
1

qc
, ω, Tl, sΠ

E +RE

)
,

so that, in the limit, labour supply and disposable income – i.e. the solutions to the outer

problem – do not depend on the prices of the green and the brown consumption good.

Lemma 7 There is ν̄ so that ν < ν̄ implies that

Zg
pgZ

b
pb
> Zg

pb
Zb

pg , (33)

where Zg
pg and Zg

pb
are the derivatives of the excess demand function for the green good

with respect to pg and pb. Zb
pg and Zb

pb
are analogously defined.

Proof. For convenience, we interpret αg and αb as functions of β̃
(

1+tb
1+tg

pb
pg

)
, where β̃ =

β
1

1−εχ . We denote by α′
g(·) > 0 the derivative of αg with respect to this expression. We

define α′
b(·) < 0 analogously. Thus,

Zg(pc, pg, pb, ·) :=
ν

(1 + tg)pg
Ag(pc, pg, pb)− Yg(pg, pc, tge) ,

where

Ag(pc, pg, pb) := E

[
αg

(
β̃

(
1 + tb
1 + tg

pb
pg

))
c∗(ṽ(β, t, p), ·)

]
.

Analogously,

Zb(pc, pg, pb, ·) :=
ν

(1 + tb)pb
Ab(pc, pg, pb)− Yb(pb, pc, tbe) ,

where

Ab(pc, pg, pb) := E

[
αb

(
β̃

(
1 + tb
1 + tg

pb
pg

))
c∗(ṽ(β, t, p), ·)

]
.

and ṽ(β, t, p) is a shorthand for ṽ(β, (1 + tc)pc, (1 + tg)pg, (1 + tb)pb). Straightforward

computations yield

Zg
pg = − ν

(1 + tg) p2g
E
[
αg(·) c∗(·)(1 + ραg − ρc

∗

g (·))
]
− Y g

pg(·)

where ραg is the elasticity of αg(·) with respect to β̃
(

1+tb
1+tg

pb
pg

)
.

Zg
pb

= − ν

(1 + tg) pg pb
E
[
αg(·) c∗(·)(ραg − ρc

∗

b (·))
]

Moreover,

Zb
pb

= − ν

(1 + tb) p2b
E
[
αb(·) c∗(·)(1 + ραb

− ρc
∗

b (·))
]
− Y b

pb
(·)

43



and

Zb
pg = − ν

(1 + tb) pg pb
E
[
αb(·) c∗(·)(ραb

− ρc
∗

g (·))
]
,

where ραb
is the elasticity of αb(·) with respect to β̃

(
1+tb
1+tg

pb
pg

)
. We define elasticities so

that they are positive. Hence,

ραb
:= −α′

b(·)
αb(·)

β̃

(
1 + tb
1 + tg

pb
pg

)
.

Given these expressions, one can compute Zg
pgZ

b
pb

and Zg
pb
Zb

pg . It is straightforward to

verify that a sufficient condition for

Zg
pgZ

b
pb
> Zg

pb
Zb

pg ,

to hold is that

E [αg(·) c∗(·)] E [αb(·) c∗(·)]

+E [αg(·) c∗(·)]E
[
αb(·) c∗(·)(ραb

− ρc
∗

b (·))
]

+E [αb(·) c∗(·)]E
[
αg(·) c∗(·)(ραg − ρc

∗
g (·))

]
≥ 0 .

By Lemma 6, ρc
∗
g (β, ·) and ρc

∗

b (β, ·) vanish for ν → 0. Hence, for ν sufficiently small, this

inequality holds. □

A.1.4 Existence and uniqueness

For the proof of existence and uniqueness, we let ṽ(β, t, p) be a shorthand for ṽ(β, (1 +

tc)pc, (1 + tg)pg, (1 + tb)pb). We also use the shorthands

Ag(pc, pg, pb) := E

[
αg

(
β,

(1 + tb)pb
(1 + tg)pg

)
c∗(ṽ(β, t, p), ·)

]
,

Ab(pc, pg, pb) := E

[
αb

(
β,

(1 + tb)pb
(1 + tg)pg

)
c∗(ṽ(β, t, p), ·)

]
,

and

Ac(pc, pg, pb) := E [ c∗(ṽ(β, t, p), ·)] .

To show existence and uniqueness we find it convenient to use the functions

Zg(pc, pg, pb) :=
ν

pg
− (1 + tg)Yg(pg, pc, tge)

Ag(pc, pg, pb)
,

44



Zb(pc, pg, pb) :=
ν

pb
− (1 + tb)Yb(pg, pc, tbe)

Ab(pc, pg, pb)
,

and

Zc(pc, pg, pb) :=
1− ν

pc
− (1 + tc)Y

net
c (pc, pg, pb, te)

Ac(pc, pg, pb)
,

where Y net
c is the production sector’s net supply of the unspecific consumption goods.

Existence and uniqueness follow from the observations below. Market clearing requires

that

Zg(pc, pg, pb) = Zb(pc, pg, pb) = Zc(pc, pg, pb) = 0 .

Observation 1. Given pc and pb, the excess demand function Zg is decreasing in pg

and there is a unique value of pg so that Zg(pc, pg, pb) = 0.

Observation 2. Given pc and pg, the excess demand function Zb is decreasing in pb

and there is a unique value of pb so that Zb(pc, pg, pb) = 0.

Observation 3. By Lemma 6, if ν is sufficiently small, then the sign of

d

dpj

[
αb

(
β,

(1 + tb)pb
(1 + tg)pg

)
c∗(ṽ(β, (1 + tc)pc, (1 + tg)pg, (1 + tb)pb), ·)

]
is equal to the sign of

d

dpj
αb

(
β,

(1 + tb)pb
(1 + tg)pg

)
,

for pj ∈ {pg, pb}.

Observation 4. By Lemma 6, if ν is sufficiently small, then the sign of

d

dpj
[αg(β, (1 + tb)pb, (1 + tg)pg) c

∗(ṽ(β, (1 + tc)pc, (1 + tg)pg, (1 + tb)pb), ·)]

is equal to the sign of

d

dpj
αg(β, (1 + tb)pb, (1 + tg)pg) ,

for pj ∈ {pg, pb}.

Observation 5. (Gross Substitutes.) If ν is sufficiently small, then Zg is increasing

in pb and Zb is increasing in pg.
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Observation 6. (Single crossing condition.) Fix pc. Consider a pb-pg diagram.

An iso-excess demand function for good j = g, b has the slope(
dpg
dpb

)
dZj=0

= −
Zj

pb

Zj
pg

If ν is sufficiently small, these iso-excess demand functions are upward sloping. Now

suppose that any point in this diagram, Zb is steeper than Zg, which holds provided that

Zg
pgZ

b
pb
> ZgpbZ

b
pg (34)

then a move toward higher prices for the brown good along the iso-excess demand curve for

the green good, implies that the excess demand for the brown good goes down. Condition

(34) can be shown to hold for ν small enough, see Lemma 7.

Observation 7. If condition (34) holds, then, for every pc, there exist prices pg(pc) and

pb(pc) so that

Zg(pc, pg(pc), pb(pc)) = 0 and Zb(pc, pg(pc), pb(pc)) = 0 .

To see this: By Observation 1, fix pb at an arbitrary level and solve for the price pg that

clears the market for the green good. If at this pair of prices there is positive/ negative

excess demand for the brown good, move along the iso-excess demand curve for the green

good towards higher/ lower prices pb. Eventually the excess demand for the brown good

will fall/ rise to zero. This follows from the functional forms above.

Observation 8. For all pg and pb, the excess demand function Zc is strictly decreasing

in pc and there is a price pc so that Zc(pc, pg, pb) = 0. If the conditions detailed in Obser-

vation 7 are satisfied, one can vary pc to clear the market for the unspecific consumption

good, while keeping the markets for the green and the brown good in equilibrium. □
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A.2 Proofs of Propositions 2 and 3

Recall that the excess demand function for the unspecific consumption good is

Zc(pc, pg, pb, ·) := Xc((1 + tc)pc, (1 + tg)pg, (1 + tb)pb, ·)− Yc(pc, tce) .

Also recall that the excess demand functions for the green and the brown good are

Zg(pc, pg, pb, ·) :=
ν

(1 + tg)pg
Ag(pc, pg, pb)− Yg(pg, pc, tge) ,

where

Ag(pc, pg, pb) := E

[
αg

(
h(κ)β̃

(
1 + tb
1 + tg

pb
pg

))
c∗(ṽ(β, t, p), ·)

]
.

Analogously,

Zb(pc, pg, pb, ·) :=
ν

(1 + tb)pb
Ab(pc, pg, pb)− Yb(pb, pc, tbe) ,

where

Ab(pc, pg, pb) := E

[
αb

(
h(κ)β̃

(
1 + tb
1 + tg

pb
pg

))
c∗(ṽ(β, t, p), ·)

]
.

and ṽ(β, t, p) is a shorthand for ṽ(β, (1+ tc)pc, (1+ tg)pg, (1+ tb)pb). To allow for shifts in

the preferences towards the green good, we interpret αg and αb henceforth as functions of

h(κ)β̃
(

1+tb
1+tg

pb
pg

)
, where β̃ = β

1
1−εχ and h is an increasing function. As before, we denote

by α′
g(·) > 0 the derivative of αg with respect to this expression. We define α′

b(·) < 0

analogously.

We denote equilibrium prices for producers and consumers by p∗j and q∗j . We will

determine how these objects change when some tax rate τ ∈ {tc, tg, tb, tce, tge, tbe} changes.
Thus we look at the system of equations

Zc(p∗c(τ), p
∗
g(τ), p

∗
b(τ), ·) = 0 ,

Zg(p∗c(τ), p
∗
g(τ), p

∗
b(τ), ·) = 0 ,

Zb(p∗c(τ), p
∗
g(τ), p

∗
b(τ), ·) = 0 .

and then take derivatives with respect to τ to determine how p∗c , p
∗
g and p∗b change when

τ changes.

A.2.1 Comparative statics with respect to tc and tce.

We employ

Zc(pc, pg, pb, ·) := Xc((1 + tc)pc, (1 + tg)pg, (1 + tb)pb, ·)− Y c(pc, tce) .
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and

Zc(p∗c(τ), p
∗
g(τ), p

∗
b(τ), ·) = 0 .

It follows from Lemma 6 that changes of p∗g and p∗b have a vanishing impact on c∗(·) for ν
small. Thus, for ν small, we can, without loss of generality, obtain the direction in which

p∗c and q∗c change, by treating p∗b and p∗g as constant. Thus, we employ

Xc
pc(·)

(
(1 + tc) p

∗
cτ + p∗c 1(τ = tc)

)
− Y c

pc(·) p
∗
cτ − Y c

tce(·)1(τ = tce) = 0 . (35)

where p∗cτ is a shorthand for the derivative of p∗c with respect to τ , 1(τ = tc) is an indicator

function that takes the value 1 if τ = tc and 1(τ = tce) is an indicator function that takes

the value 1 if τ = tce.

Obviously,(
Xc

pc(·)(1 + tc)− Y c
pc(·)

)
p∗cτ = −Xc

pc(·)1(τ = tc) + Y c
tce(·)1(τ = tce) .

Since

Xc
pc(·)(1 + tc)− Y c

pc(·) < 0 ,

−Xc
pc(·)1(τ = tc) > 0 , and Y c

tce(·)1(τ = tce) < 0 ,

it follows that

p∗cτ > 0 for τ = tce , and p∗cτ < 0 for τ = tc .

Since q∗c = (1 + tc)p
∗
c it follows immediately that also

q∗cτ > 0 for τ = tce .

To obtain also q∗ctc , note that for τ = tc, (35) implies that

Xc
pc(·)q

∗
ctc = Y c

pc(·) p
∗
cτ .

By the previous arguments

Xc
pc(·) < 0 and Y c

pc(·) p
∗
cτ < 0 .

Thus, we must have

q∗cτ > 0 for τ = tc .
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A.2.2 Comparative statics of prices in the markets for the green and the

brown good

It follows from Lemma 6 that changes of p∗g and p∗b have a vanishing impact on c∗(·) and
hence on p∗c for ν small. Thus, for ν small, we can, without loss of generality, obtain the

direction in which p∗g q∗g , p
∗
b and q∗b change, by treating p∗c and c∗(·) as constant. This is

what we do in what follows. Hence, excess demand functions for the brown and the green

good can now more simply be written as

Zg(pg, pb, tg, tb, tge, κ) := Xg((1 + tg)pg, (1 + tb)pb, κ)− Y g(pg, tge) ,

where

Xg((1 + tg)pg, (1 + tb)pb, κ) :=
ν

(1 + tg)pg
Ag((1 + tg)pg, (1 + tb)pb, κ)

and

Ag((1 + tg)pg, (1 + tb)pb, κ) := E

[
αg

(
h(κ) β̃

(
1 + tb
1 + tg

pb
pg

))
c∗(·)

]
.

Analogously,

Zb(pg, pb, tg, tb, tbe, κ) := Xb((1 + tg)pg, (1 + tb)pb, κ)− Yb(pb, tbe) ,

where

Xb((1 + tg)pg, (1 + tb)pb, κ) :=
ν

(1 + tb)pb
Ab(κ, pg, pb)

and

Ab((1 + tg)pg, (1 + tb)pb, κ) := E

[
αb

(
h(κ) β̃

(
1 + tb
1 + tg

pb
pg

))
c∗(·)

]
.

To obtain comparative statics results we start with

Zg(p∗g(τ), p
∗
b(τ), tg, tb, tge, κ) = 0 and Zb(p∗g(τ), p

∗
b(τ), tg, tb, tbe, κ) = 0

and then take derivatives with respect to τ , where τ ∈ {κ, tg, tge, tb, tbe}. Differentiating

Zg(·) = 0 yields

Zg
pg(·)p

∗
gτ + Zg

pb
(·)p∗bτ + Γg(τ) = 0 (36)

where

Zg
pg(·) := Xg

qg(·)(1 + tg)− Y g
pg(·)

Zg
pb
(·) := Xg

qb
(·)(1 + tb)
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and

Γg(τ) = Xg
qg(·) p

∗
g 1(τ = tg) +Xg

qb
(·) p∗b 1(τ = tb)

−Y g
tge(·)1(τ = tge) +Xg

κ(·)1(τ = κ) .

Differentiating Zb(·) = 0 yields

Zb
pg(·)p

∗
gτ + Zb

pb
(·)p∗bτ + Γb(τ) = 0 (37)

where

Zb
pb
(·) := Xb

qb
(·)(1 + tb)− Y b

pb
(·)

Zb
pg(·) := Xb

qg(·)(1 + tg)

and

Γb(τ) = Xb
qg(·) p

∗
g 1(τ = tg) +Xb

qb
(·) p∗b 1(τ = tb)

−Y b
tbe
(·)1(τ = tbe) +Xb

κ(·)1(τ = κ) .

From (36) and (37) we obtain:

p∗gτ =
1

D

(
Γb(τ)Zg

pb
(·)− Γg(τ)Zb

pb
(·)
)

(38)

and

p∗bτ =
1

D

(
Γg(τ)Zb

pg(·)− Γb(τ)Zg
pg(·)

)
(39)

where

D(·) := Zg
pg(·)Z

b
pb
(·) − Zg

pb
(·)Zb

pg(·) .

Note that D(·) > 0 by Lemma 7.

Comparative statics with respect to tg and tb. Consider a change of tg first. With

Γg(τ) = Xg
qg(·) p

∗
g

and

Γb(τ) = Xb
qg(·) p

∗
g

it follows immediately from (38) and (39) that for τ = tg,

p∗gτ < 0 and p∗bτ > 0 .
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Since q∗b = (1 + tb)p
∗
b and since tb is held constant, we also have

q∗bτ > 0 .

We now show that also

q∗gτ > 0 .

To see this, note first that

q∗g = (1 + tg)p
∗
g

implies

q∗gτ =
(
1 + (1 + tg)p

∗
gτ

1

p∗g

)
p∗g (40)

Further note that for τ = tg, (38) can be rewritten as

1

p∗g
p∗gτ =

1

D(·)

(
Xb

qg(·)Z
g
pb
(·)−Xg

qg(·)Z
b
pb
(·)
)

Using

Xb
qg(·) =

Zb
pg(·)

1 + tg
,

Xg
qg(·) =

Zg
pg(·)

1 + tg
+

Y g
pg(·)

1 + tg
,

and

D(·) := Zg
pg(·)Z

b
pb
(·) − Zg

pb
(·)Zb

pg(·) ,

this equation can be rewritten as

(1 + tg)
1

p∗g
p∗gτ = −1−

Zb
pb
(·)Y g

pg(·)
D(·)

(41)

From (40) and (41) it follows that

q∗gτ = −
Zb

pb
(·)Y g

pg(·)
D(·)

p∗g > 0 .

Analogous arguments can be used to show that for τ = tb,

p∗gτ > 0 and p∗bτ < 0 ,

as well as

q∗gτ > 0 and q∗bτ > 0 .
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Comparative statics with respect to tge and tbe. Consider a change of tge first.

With

Γg(τ) = −Y g
tge(·)

and

Γb(τ) = 0

it follows immediately from (38) and (39) that for τ = tg,

p∗gτ > 0 and p∗bτ > 0 . (42)

Since q∗g = (1 + tg)p
∗
g, q

∗
b = (1 + tb)p

∗
b and since tg and tb are held constant, we also have

q∗gτ > 0 and q∗bτ > 0 . (43)

Analogous arguments can be used to show that (42) and (48) also hold for τ = tbe.

Comparative statics with respect to κ. Now consider a change of κ. With

Γg(τ) = Xg
κ(·)

and

Γb(τ) = Xb
κ(·)

it follows from (38) that

p∗gτ =
1

D(·)

(
Xb

κ(·)Zg
pb
(·)−Xg

κ(·)Zb
pb
(·)
)

(44)

With

Xg(·) =
ν

(1 + tg)pg
Ag((1 + tg)pg, (1 + tb)pb, κ)

for

Ag((1 + tg)pg, (1 + tb)pb, κ) := E

[
αg

(
h(κ) β̃

(
1 + tb
1 + tg

pb
pg

))
c∗(·)

]
.

Xb(·) =
ν

(1 + tb)pb
Ab(κ, pg, pb)

for

Ab((1 + tg)pg, (1 + tb)pb, κ) := E

[
αb

(
h(κ) β̃

(
1 + tb
1 + tg

pb
pg

))
c∗(·)

]
.

and

αb(·) = 1− αg(·)
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it follows that

Xb
κ(·) = −

q∗g
q∗b

Xg
κ(·) . (45)

Substituting this into (44) yields

p∗gτ =
1

D(·)

(
−
q∗g
q∗b
Zg

pb
(·)−Zb

pb
(·)
)
Xg

κ(·) (46)

To prove that p∗gτ > 0, we now verify that

q∗g Zg
pb
(·) + q∗b Zb

pb
(·) < 0 . (47)

Recall from the proof of Lemma 7 that

Zg
pb

= − ν

(1 + tg) pg pb
E
[
αg(·) c∗(·)(ραg − ρc

∗

b (·))
]

and

Zb
pb

= − ν

(1 + tb) p2b
E
[
αb(·) c∗(·)(1 + ραb

− ρc
∗

b (·))
]
− Y b

pb
(·) .

Therefore

q∗g Zg
pb
(·) + q∗b Zb

pb
(·) =

− ν
p∗b

E
[
αg(·) c∗(·)(ραg − ρc

∗

b (·))
]

− ν
p∗b

E
[
αb(·) c∗(·)(1 + ραb

− ρc
∗

b (·))
]
− Y b

pb
(·)

By Lemma 6, ρc
∗

b (·) vanishes for ν → 0. Hence, it follows that, for ν sufficiently small,

we must have

q∗g Zg
pb
(·) + q∗b Zb

pb
(·) < 0 .

An analogous argument can be used to show that t p∗gτ < 0. Since q∗g = (1 + tg)p
∗
g,

q∗b = (1 + tb)p
∗
b and since tg and tb are held constant, we also have

q∗gτ > 0 and q∗bτ < 0 . (48)

53



A.3 Proof of Proposition 5

Consider a given utility profile U0 : ω 7→ U0(ω), where

U0(ω) = u0(ω)− k(yl0(ω), ω) , (49)

and

u0(ω) := u(x0c(ω), χ(β, x0g(ω), x0b(ω)))

is the consumption utility realized by a type ω-individual in the status quo. In the

following we take the function U0 as given and seek to find that allocation that reaches

these utility levels with minimal emissions subject to the economy’s resource constraint

and the requirement of incentive compatibility.

Incentive compatibility. By standard arguments, incentive compatibility in the sta-

tus quo holds if and only if

U ′
0(ω) = −k2(yl0(ω), ω)

and if the function yl0 is non-decreasing. Consequently, for ω = argminΩ, we have

U0(ω) = U0(ω)−
∫ ω

ω

k2(yl0(n), n)dn

and

u0(ω) = V0(ω)− k(yl0(ω), ω) . (50)

Thus, if we take the utility profile U0 : ω 7→ U0(ω) and hence also the derivative of this

function U ′
0 : ω 7→ U ′

0(ω) as given, then due to (49), we also take the profile yl0 : ω 7→
yl0(ω) as given. With the functions U0 and yl0 given, also the consumption utility profile

u0 : ω 7→ u0(ω) is given.

Thus, for the problem to reach the status quo utilities with minimal emissions, we can

as well assume that yl0 : ω 7→ yl0(ω), and hence aggregate labour supply Y0Eω[y0(ω)], as

well as u0 : ω 7→ u0(ω) are predetermined. A solution to this problem that respects these

constraints will be incentive compatible by construction.

The optimization problem. What has to be chosen are consumption levels xc : ω 7→
xc(ω), xb : ω 7→ xb(ω) and xg : ω 7→ xg(ω) for households that differ in productivity. In

addition, for every sector j ∈ {c, b, g} and every type of firm θj = (αj, γj) in that sector

labour inputs and resources devoted to the abatement of emissions need to be chosen.

Formally, the functions lj : θj 7→ lj(θj) and rj : θj 7→ rj(θj) need to be chosen.

The objective is to minimize∑
j∈{c,b,g}

Ej =
∑

j∈{c,b,g}

Ej

[(
e0j − aj(rj(θj)

)
αjfj(lj(θj))

]
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subject to the following constraints: First, the chosen allocation needs to generate the

same consumption utility as the status quo allocation. Formally, for all ω,

u(xc(ω), χ(βxg(ω), xb(ω))) = u0(ω) . (51)

Second, the labour used up in the production process is bounded from above by Y0, the

amount that households make available in the status quo,∑
j∈{c,b,g}

Ej [lj(θj)] ≤ Y0 . (52)

Third, aggregate consumption is bounded by the production sector’s (net) output of the

various goods. For the unspecific consumption good this requires that

Eω[xc(ω)] ≤ Ec[αcfc(lc(θc))]−
∑

j∈{c,b,g}

Ej[γjrj(θj)] . (53)

For the green and the brown good the constraints are, respectively,

Eω[xg(ω)] ≤ Eg[αgfg(lg(θg))] and Eω[xb(ω)] ≤ Eb[αbfb(lb(θb))] . (54)

Solving the problem. Consider the Lagrangean

L :=
∑

j∈{c,b,g} Ej

[(
e0j − aj(rj(θj)

)
αjfj(lj(θj))

]
−Eω

[
µ(ω)

(
u0(ω)− u(xc(ω), χ(β, xg(ω), xb(ω)))

)]
−λl

(∑
j∈{c,b,g} Ej [lj(θj)]

)
−λc

(
Eω[xc(ω)] +

∑
j∈{c,b,g} Ej[γjrj(θj)]− Ec[αcfc(lc(θc))]

)
−λg

(
Eω[xg(ω)]− Eg[αgfg(lg(θg))]

)
−λb

(
Eω[xb(ω)]− Eb[αbfb(lb(θb))]

)

where µ(ω) := ν(ω)
ϕ(ω)

whith ν(ω) the Lagrangean multiplier for the constraint in (51) and ϕ

the density associated with the distribution of ω, and λl, λc, λg and λb are the multipliers

associated with the resource constraints.

Proof of Proposition 6

Henceforth we denote the consumers’ equilibrium prices by

q∗(T ) = (q∗c (T ), q∗g(T ), q∗b (T ))
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and the producers’ equilibrium prices by

p∗(T ) = (p∗c(T ), p∗g(T ), p∗b(T )) ,

where the tax system T consists of the non-linear income tax schedule Tl, the emission

taxes te = (tce, tge, tbe) and the consumption taxes tx = (tc, tg, tb).

Lemma 8 Consider a generic tax rate τ ∈ {tc, tg, tb, tce, tge, tbe}. The marginal effect of

a change of τ on type θ’s indirect utility is given by

Vτ (θ, ·) := ṽ(β, q)

(
sΠτ +Rτ −

(
dq∗c
dτ

x∗
c(·) +

dq∗g
dτ

x∗
g(·) +

dq∗b
dτ

x∗
b(·)
))

where Πτ and Rτ are, respectively, total differentials of equilibrium profits and equilibrium

tax revenue.

Proof. The utility realized by a generic type θ individual in a competitive equilibrium

given tax policy T is given by

V (θ, q∗(T ), Tl) := c∗(·)ṽ(β, q)− k(y∗l (·), ω) where c∗ = y∗l − T (y∗l ) + sΠ+R ,

Note that y∗l is a function of ṽ via the outer problem. The terms involving changes of

labour earnings cancel, however, by the first order condition of the outer problem. By

Roy’s identity, the marginal effect of a change of τ on individual welfare equals

ṽ(β, q)

(
sΠτ +Rτ −

(
dq∗c
dτ

x∗
c(·) +

dq∗g
dτ

x∗
g(·) +

dq∗b
dτ

x∗
b(·)
))

□

With a generic social welfare function, the corresponding change in social welfare is

given by

Wτ = Eθ

[
g(ṽ(β, q), θ)

(
sΠτ +Rτ −

(
dq∗c
dτ

x∗
c(·) +

dq∗g
dτ

x∗
g(·) +

dq∗b
dτ

x∗
b(·)
))]

Note that the revenue effect Rτ is weighted by ḡ := E[g(ṽ(·), β, ω, s)] in the welfare

function. Analogously, the effect on equilibrium profits in sector j is weighted by

ḡΠj := E[g(ṽ(·), β, ω, s) ṽ(β, q) sj] .

Below we provide a more detailed characterization of these effects. First, we note, how-

ever, that

−Eθ

[
g(ṽ(β, q), θ)

(
dq∗c
dτ

x∗
c(·) +

dq∗g
dτ

x∗
g(·) +

dq∗b
dτ

x∗
b(·)
)]
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can be rewritten as

−E
[
g(ṽ(β, q), θ)

(
dq∗c
dτ (x∗

c(·)−X∗
c (·)) +

dq∗g
dτ

(
x∗
g(·)−X∗

g (·)
)
+

dq∗b
dτ (x∗

b(·)−X∗
b (·))

)]
−ḡ

dq∗c
dτ X∗

c (·) − ḡ
dq∗g
dτ X∗

g (·)− ḡ
dq∗b
dτ X∗

b (·) .

= −dq∗c
dτ Cov(g(ṽ(·), θ), x∗

c(·))− ḡ
dq∗c
dτ X∗

c (·)

−dq∗g
dτ Cov(g(ṽ(·), θ), x∗

g(·))− ḡ
dq∗g
dτ X∗

g (·)

−dq∗b
dτ Cov(g(ṽ(·), θ), x∗

b(·))− ḡ
dq∗b
dτ X∗

b (·) .

(55)

Characterizing Rτ . Revenue can be written as

R(·) = (q∗c (T )− p∗c(T ))X∗
c (Π(·),R(·), q∗(T ))

+(q∗g(T )− p∗g(T ))X∗
g (Π(·),R(·), q∗(T ))

+(q∗b (T )− p∗b(T ))X∗
b (Π(·),R(·), q∗(T ))

+E[Tl(y
∗
l (·))]

+
∑

j=c,b,g

tje E∗
j (·)

For τ ∈ {tc, tg, tb} we have

Rτ =
(

dq∗c (T )
dτ

− dp∗c(T )
dτ

)
X∗

c (·) + (q∗c (T )− p∗c(T ))X∗
cτ

+
(

dq∗g(T )

dτ
− dp∗g(T )

dτ

)
X∗

g (·) + (q∗g(T )− p∗g(T ))X∗
gτ

(
dq∗b (T )

dτ
− dp∗b (T )

dτ

)
X∗

b (·) + (q∗b (T )− p∗b(T ))X∗
bτ

+E[T ′
l (y

∗
l (·, θ))y∗lτ (·, θ)]

+
∑

j=c,b,g

tje Ejτ

where X∗
cτ , X

∗
gτ and X∗

bτ are total differentials of equilibrium quantities, y∗lτ (·, θ) is the

total differential of equilibrium labour supply for an individual of type θ and Ejτ is the

total differential of equilibrium emissions in sector j. For τ ∈ {tce, tge, tbe}, there is

an additional term I(τ = τje)E∗
j (·) in this expression. Hence, we can summarize: For

τ ∈ {tc, tg, tb, tce, tge, tbe}, we have
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Rτ =
(

dq∗c (T )
dτ

− dp∗c(T )
dτ

)
X∗

c (·) + (q∗c (T )− p∗c(T ))X∗
cτ

+
(

dq∗g(T )

dτ
− dp∗g(T )

dτ

)
X∗

g (·) + (q∗g(T )− p∗g(T ))X∗
gτ

(
dq∗b (T )

dτ
− dp∗b (T )

dτ

)
X∗

b (·) + (q∗b (T )− p∗b(T ))X∗
bτ

+E[T ′
l (y

∗
l (·, θ))y∗lτ (·, θ)]

+
∑

j=c,b,g

tje Ejτ

+
∑

j=c,b,g

I(τ = τje)E∗
j (·) .

(56)

Characterizing Πjτ . For τ ∈ {tc, tg, tb}, by the envelope theorem, equilibrium profits

are affected only via price changes. Thus, for j ∈ {c, g, b}, we have

Πj,τ =
dp∗j (T )

dτ
Y ∗
j (·)−

dp∗c(T )
dτ

Ej[γ r∗(·)] . (57)

For τ ∈ {tce, tge, tbe}, we have

Πj,τ =
dp∗j (T )

dτ
Y ∗
j (·)−

dp∗c(T )
dτ

Ej[γ r∗(·)]− I(τ = τje)E∗
j (·) . (58)
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Collecting terms. Upon collecting terms and upon making an obvious use of market-

clearing conditions we find that

Wτ = − dq∗c (T )
dτ

Cov(g(ṽ(·), θ), x∗
c(·))

+dp∗c(T )
dτj

(
(ḡΠc − ḡ)(Y ∗

c − E[γ r∗c ])− (ḡΠg − ḡ)E[γ r∗g ])− (ḡΠb
− ḡ)E[γ r∗b ])

)
+ ḡ (q∗c (T )− p∗c(T ))X∗

cτ (·)

− dq∗g(T )

dτ
Cov(g(ṽ(·), θ), x∗

g(·))

+
dp∗g(T )

dτ
(ḡΠg − ḡ)X∗

g (·)

+ ḡ (q∗g(T )− p∗g(T ))X∗
gτ (·)

− dq∗b (T )

dτ
Cov(g(ṽ(·), θ), x∗

b(·))

+
dp∗b (T )

dτ
(ḡΠb

− ḡ)X∗
b (·)

+ ḡ (q∗b (T )− p∗b(T ))X
∗
bτ (τ)

+ḡ Eθ[T
′
l (y

∗
l (·, θ))y∗lτ (·, θ)]

+ḡ
∑

j=c,b,g

tjeE∗
jτ (·)

+ḡ
∑

j=c,b,g

I(τ = τje)E∗
j (·) ,

which proves Proposition 6.

A.4 Proof of Proposition 9

Preliminaries I. Consider an individual’s outer problem under the assumption of ho-

mothetic preferences and with a wage rate that is normalized to 1: Choose c and yl to

max

c ṽ(β, q)− k(yl, ω) s.t. c = yl − T (yl) + e
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where e is a source of income that is exogenous from the individual’s perspective. Thus,

the optimal level of y, henceforth denoted by y∗l (ṽ(β, q), ω) solves

max
yl

(yl − T (yl))ṽ(β, q)− k(yl, ω) .

Note that – as an implication of Roy’s identity – for any j ∈ {c, g, b},

∂ṽ(β, q)

∂qj
= −z∗j (β, q) ṽ(β, q)

where z∗j (β, q) is the fraction of disposable income that an individual spends on good j.

Consequently, everything else equal, a price increase for a good a with a large budget

share reduces the marginal utility of income more than the increase of a price with a

small budget share. Hence, the former reduces labour supply more than the latter. More

formally,

∂y∗l (ṽ(β,q),ω)

∂qj
= −∂y∗l (·)

∂ṽ(·) ṽ(β, q) z∗j (β, q)

= −η(ω, β) y∗l (·) z∗j (β, q) ,
(59)

is an expression that is monotonic in the budget share z∗j (β, q); and η(ω, β) is the elasticity

of labour income y∗l with respect to the marginal utility of disposable income ṽ(β, q) for

an individual with productive ability ω and preference parameter β.

Now reconsider, the specifications

u(xc, χ(βxg, xb)) = x1−ν
c χ(βxg, xb)

ν .

and

χ(β, xg, xb) =
(
βx1−εχ

g + x
1−εχ
b

) 1
1−εχ

.

that were used to proof Propositions 1 - 3, invoking the additional assumption that ν is

small, so that the budget share of the unspecific consumption good is “large” relative to

the budget shares of the green and the brown good. It follows from Proposition 2 that an

increase of tc and tce will push up qc, whereas an increase of tg, tb, tge or tbe will push up

qb and qg. By the arguments above, for ν small enough, increases of tc and tce come with

labour supply distortions that are more significant than the labour supply distortions

associated with increases of tg, tb, tge or tbe.

Preliminaries II. From (24) it follows that

Wnet
τ = −

∑
j

dq∗j (T )

dτ
Cov(g(ṽ(·), θ), x∗

j(·))

+ḡ Eθ[T
′
l (y

∗
l (·, θ))y∗lτ (·, θ)]

(60)
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Using that preferences are homothetic and equation (59), we have, moreover,

ḡ Eθ[T
′
l (y

∗
l (·, θ))y∗lτ (·, θ)] =

−
∑

j

dq∗j (T )

dτ
ḡ Eβ,ω[T

′
l (y

∗
l (·, θ)) η(ω, β) y∗l (·) z∗j (β, q)]

Thus,

Wnet
τ =

∑
j

dq∗j (T )

dτ
B̄j (61)

where

B̄j := −Cov(g(ṽ(·), θ), c∗(·)z∗j (β, q))

−ḡ Eβ,ω[T
′
l (y

∗
l (·, θ)) η(ω, β) y∗l (·) z∗j (β, q)]

is the net benefit associated with a marginal increase of the consumer price for good j.

Recall that

dq∗j (T )

dτ
=


1 + tje ej0, if τ = tj ,

(1 + tj) ej0, if τ = tje ,

0, else .

Therefore, for τc ∈ {tc, tce}, we have that

Wnet
τc =

dq∗c
dτc

B̄c . (62)

Likewise, for τb ∈ {tb, tbe},

Wnet
τb

=
dq∗b
dτb

B̄b . (63)

Finally, for τg ∈ {tg, tge},

Wnet
τg =

dq∗g
dτg

B̄g . (64)

Proof of Statement 1. We consider the case

−Cov(g(·), x∗
b(·)) > − Cov(g(·), x∗

c(·)) . (65)

The reasoning for the alternative case−Cov(g(·), x∗
g(·)) > − Cov(g(·), x∗

c(·)) follows along
the same lines. Now, the assumption that

Wnet
τc = 0

requires that

− Cov(g(·), x∗
c(·)) = ḡ Eβ,ω[T

′
l (y

∗
l (·, θ)) η(ω, β) y∗l (·)φ∗

c(q)] (66)
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The assumption that ν is small implies that z∗c (q) > z∗g(β, q), for all β. Therefore,

ḡ Eβ,ω[T
′
l (y

∗
l (·, θ)) η(·) y∗l (·)z∗c (q)] > ḡ Eβ,ω[T

′
l (y

∗
l (·, θ)) η(·) y∗l (·)z∗b (β, q)] (67)

Together equations (65), (66) and (67) imply that

−Cov(g(·), x∗
b(·)) > ḡ Eβ,ω[T

′
l (y

∗
l (·, θ)) η(·) y∗l (·)z∗b (β, q)] (68)

and hence

Wnet
τb

> 0 .

To see that also

Wnet
τg < 0

first define

B(ω, β) = (g(·)− ḡ)c∗(·) + ḡ T ′
l (y

∗
l (·, θ)) η(ω, β) y∗l (·)

and note that

Wnet
τc = 0

requires that

z∗c (q)Eω,β[B(ω, β)] = 0 .

which can be true only if

Eω,β[B(ω, β)] = 0 .

Further note that

B̄g = −Eβ,ω[B(ω, β)φ∗
b(β, q)]

= −Eβ,ω[B(ω, β)(1− z∗g(β, q)− z∗c (q))]

= −Eω,β[B(ω, β)]− B̄b − B̄c

< 0 ,

where the last inequality is implied by the facts that Wnet
τc = 0 implies

Eω,β[B(ω, β)] = B̄c = 0 .

and that Wnet
τb

> 0 implies that

B̄b > 0 .
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Proof of Statement 2. If β is a constant we can write

B(β, ω) = B(ω) = (g(·)− ḡ)c∗(·) + ḡ T ′
l (y

∗
l (·, θ)) η(ω) y∗l (·)

and, for any j ∈ {c, g, b}

z∗j (β, q) = z∗j (q) .

Consequently,

B̄c = −Eω[B(ω)]z∗c (q) ,

B̄g = −Eω[B(ω)]z∗g(q) ,

and

B̄b = −Eω[B(ω)]z∗b (q) .

Thus, these expressions all have the same sign. Statement 2 follows from combining this

observation with equations (62) – (64).

B Remarks on necessary conditions for optimal pol-

icy design

Remember that for any tax τ , we can write

Wτ = Wnet
τ + ḡ

∑
j

tje
dE∗

j (·)
dτ

,

where

ḡ
∑
j

tje
dE∗

j (·)
dτ

is the loss of revenue from higher corrective taxes that is due to behavioral responses,

and Wnet
τ gives the welfare implications of higher taxes, without taking that revenue loss

into account. Now consider a restricted set of tax instruments: There can be taxes on

different commodities tc, tg, tb and there is a uniform tax on emissions, t̄e. Also suppose

that tc, tg and tb are set optimal in the sense that

Wnet
τ = 0 ,

for τ ∈ {tc, tg, tb} and t̄e is set such that the target level of emissions is reached. This

leads to an allocation under which the condition

Wnet
τ1

−Wnet
τ2

(
Eτ1
Eτ2

)
= 0 , (69)
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is satisfied, so that, locally, there are no gains from a reform of this tax system. One

might debate, whether Wnet
τ = 0, for all τ , is the appropriate optimality condition. It

is based on an optimization that disregards the implications of climate policy for tax

revenue. Taking these revenue implications into account, by contrast, requires to have

Wτ = 0 for all τ . If that’s the case, then Wnet
τ = ḡ t̄e Eτ , for all τ ∈ {tc, tg, tb}. Again,

the implication is that condition (69) is satisfied. Thus, which of these conditions is

employed doesn’t make a difference for the answer to question, whether, locally, there

are gains from a reform the commodity tax system. To complicate matters even more

note that a Lagrangean approach to the problem of maximizing welfare subject to the

requirement of reaching a given emissions target would yield optimality conditions of the

form

Wτ = λ Eτ ,

for all τ , where λ is the multiplier associated with the constraint that emissions must

not exceed a given target level. Again, the implication is that condition (69) holds for

any pair τ1 and τ2. This discussion shows that various combinations of policies may

satisfy the condition that locally there is no room for improvement. Condition (69) is

a necessary condition for optimality, not a sufficient one. The analysis in this paper

has stayed away from a characterization of optimal polices and instead focussed on this

necessary condition to answer the question whether a market-based approach to climate

policy leaves room for an improvement of the tax system.

C Further remarks on Ramsey models of taxation

Ramsey models of taxation are known for the inverse elasticities rule. When the gov-

ernment needs to raise revenue with distortionary taxes, it should set higher taxes on

goods where behavioral responses are less pronounced. In this paper, there is no revenue

requirement of the government but a target level of emissions. Intuitively, on might think

that this induces a race between the inverse elasticities logic, whose rationale is to protect

gains from trade as much as possible, and the need to reach the emission target. Strong

behavioral responses make it easy to reduce emissions and this may be a reason to tax

goods with high elasticities more. The analysis in this paper shows that such an intuition

would be misguided. With distributive indifference and without labour income taxation

(a frequent assumption in Ramsey models of taxation), Proposition 6 implies that, for

any τ ∈ {tc, tb, tg, tce, tbe, tge},

Wτ = + ḡ
∑

j(q
∗
j (T )− p∗j(T ))X∗

jτ (·)

+ḡ
∑

j tje E∗
jτ (·) ,

(70)

where the term in the first line is a measure of the economic surplus that is lost when

taxes drive a wedge between consumer and producer prices and the term in the second line
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gives the implications of higher taxes on the revenue generated by corrective taxes. At a

hypothetical status quo without differential commodity taxation and a uniform Carbon

tax, the term in the first line vanishes with the implication that condition

Wnet
τ1

−Wnet
τ2

(
Eτ1
Eτ2

)
= 0 ,

is satisfied for any pair (τ1, τ2), implying that there is no reason to deviate from the

market-based approach. Note that both the desire to protect the economic surplus that

is generated in competitive markets and the response of emissions to taxes are part of

the analysis that leads to this conclusion. Still, the elasticities logic does not play out.

Here, the elasticities logic would play out in an optimal tax formula that applies when

deviations from the market-based approach are desirable. Away from the benchmark of

uniform commodity taxation ḡ
∑

j(q
∗
j (T )− p∗j(T ))X∗

jτ (·), becomes part of the equation

that is used to evaluate the welfare effects of policy changes.

The treatment of tax revenue is an important difference between analyses in the

tradition of Ramsey (1927) and the analysis presented in this paper. In Ramsey’s analysis

tax revenue is extracted from individuals, here tax revenue is rebated lump sum and

therefore a source of welfare for individuals. Here, with distributive indifference, it is

harmful if tax revenue is generated through distortionary commodity taxes (the first

term in the right-hand side of (70) is unambiguously negative), and, moreover, there is

the possibility to refrain from the use of such taxes. In Ramsey models, by contrast, for

exogenous reasons, tax revenue has to be generated through distortionary taxes.
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