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1 Decision-theoretic Foundations

1.1 The Environment

Formally, we consider a probability space (µ,Ω,F) where µ denotes a subjective
additive probability measure and the event space F is rich enough to express our
assumptions that for any given number n of individuals (i) the agent knows for each
individual whether it has survived until age m or not whereas (ii) the agent does
not make any direct observations about the true parameter value of the individuals’
survival probability. As state space we assume

Ω = ×∞
i=1Si × Π,

with generic element ω = (s1, s2, ..., πj,m) such that for the sample-space ×∞
i=1Si

holds Si = {0, 1} for i = 1, 2, ... whereby the parameter-space Π = [0, 1] collects all
possible values of the individuals’ “true” survival probability. The event space F is
accordingly defined as follows. Endow each Si with the discrete metric and denote
by Sk the Borel σ-algebra in ×k

i=1Si and by S∞ the σ-algebra generated by S1,S2, ....
Similarly, endow Π with the Euclidean metric and denote by B the Borel σ-algebra
in Π. Our event space F is then defined as the standard product algebra S∞ ⊗ B.

Define by π̃j,m : Ω → [0, 1] such that π̃j,m (s1, s2, ..., πj,m) = πj,m the F -measurable
coordinate random variable that assigns to every state of the world the true proba-
bility of surviving from age j to m. As in the main text we will now drop subscripts
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and reintroduce them below. For our purpose it is furthermore convenient to denote
by π the event in F such that π ∈ Π is the true probability, i.e.,

π = {ω ∈ Ω | π̃ (ω) = π} .

As the agent’s prior over π̃ is given as a Beta distribution with parameters α, β > 0
we have

µ (π) = Kα,βπ
α−1 (1− π)β−1

where Kα,β = Γ(α+β)
Γ(α)Γ(β)

is a normalizing constant whereby the gamma function is

defined as Γ (y) =
∞∫
0

xy−1e−xdx for y > 0.

LetXi : Ω → {0, 1}, with i = 1, 2, ..., denote the Si-measurable coordinate random
variable so that

Xi (s1, ..., si, ..., π) = si

whereby we interpret {ω ∈ Ω | Xi (ω) = 0} as the event in F that individual i has
not survived until age m whereas {ω ∈ Ω | Xi (ω) = 1} denotes the complement event
that individual i has survived until age m. We assume that, conditional on the
parameter-value π, each Xi is Bernoulli distributed with probabilities

µ ({ω ∈ Ω | Xi (ω) = x} | π) = πx (1− π)1−x for x ∈ {0, 1} .

Furthermore, denote by In : Ω → {0, ..., n} the Sn-measurable random variable count-
ing the number of surviving individuals in a sample of size n, i.e., In =

∑n
i=1Xi.

Hence, Ikn, i.e., the event in F so that k out of n individuals have survived until age
m, is given by

Ikn = {ω ∈ Ω | In (ω) = k} .

Since the Xi are i.i.d. Bernoulli distributed, each In is, conditional on the parameter-
value π, binomially distributed with probabilities

µ
(
Ikn | π

)
=

(
n

k

)
πk (1− π)n−k for k ∈ {0, ..., n} .

By Bayes’ rule we then obtain the following posterior probability that π is the true
value conditional on information Ikn

µ
(
π | Ikn

)
=

µ
(
π ∩ Ikn

)
µ (Ikn)

=
µ
(
Ikn | π

)
µ (π)∫

[0,1]
µ (Ikn | π)µ (π) dπ

= Kα+k,β+n−kπ
α+k−1 (1− π)β+n−k−1 .
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Furthermore, observe that the unconditional probability of receiving information
Ikn is given by

µ
(
Ikn
)

=
µ
(
Ikn | π

)
µ (π)

µ (π | Ikn)

=

(
n
k

)
πk (1− π)n−k µ (π) ·Kα,βπ

α−1 (1− π)β−1

Kα+k,β+n−kπα+k−1 (1− π)β+n−k−1

=

(
n

k

)
Kα,β

Kα+k,β+n−k

=

(
n

k

)
Γ (α + β)

Γ (α) Γ (β)

Γ (α + k) Γ (β + n− k)

Γ (α+ β + n)

=

(
n

k

)
Γ (α + β)

Γ (α + β + n)
· Γ (α + k)

Γ (α)
· Γ (β + n− k)

Γ (β)

=

(
n

k

)
Γ (α + β)

(α + β + n− 1) · ... (α + β) · Γ (α + β)

·Γ (α + k − 1) · ... · α · Γ (α)

Γ (α)

·Γ (β + n− k − 1) · ... · β · Γ (β)

Γ (β)

=

(
n

k

)
(α + k − 1) · ... · α · (β + n− k − 1) · ... · β

(α + β + n− 1) · ... · (α + β)
,

whereby the last equality readily follows from the fact that Γ (x) = (x− 1) ·Γ (x− 1)
for x > 1 (Rudin 1976, Theorem 8.18).

1.2 Ambiguous Beliefs

Definition 1. For a given measurable space (Ω,F) the neo-additive capacity, ν, is
defined, for some δ, λ ∈ [0, 1] by

ν (A) = δ · (λ · ωo (A) + (1− λ) · ωp (A)) + (1− δ) · µ (A) (1)

for all A ∈ F whereby µ is some additive probability measure and we have for the
non-additive capacities ωo

ωo (A) = 1 if A ̸= ∅
ωo (A) = 0 if A = ∅
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and ωp respectively

ωp (A) = 0 if A ̸= Ω

ωp (A) = 1 if A = Ω.

For an F -measurable bounded real function f , it can be shown that the Choquet
expected value of f with respect to a neo-additive capacity ν is given as

E [f, ν] = δ · (λ · sup f + (1− λ) · inf f) + (1− δ) · E [f, µ] ,

cf. Schmeidler (1986).
In the context of survival expectations, we are interested in the agent’s belief

about event A according to which she is alive at some target age m. Under the
assumption that there is always the possibility to reach age m, the event A cannot
be the null event, implying ωo (A) = 1. On the other hand, we also stipulate that
there is always the possibility to die before reaching age m so that A cannot be the
universal event either, implying ωp (A) = 0. As a consequence, the agent’s belief to
survive until age m in (1) simplifies to

ν (A) = δ · λ+ (1− δ) · µ (A) .

According to our interpretation, the additive probability µ (A) in (1.2) stands in
for the agent’s “rational” part of her survival beliefs. Under the rational expectations
paradigm the subjective additive probability measure µ must, first, coincide with
the “true” probability distribution and, second, the agent must not be ambiguous
about her subjective belief, i.e., δ = 0. However, we do not only assume that the
representative agent is ambiguous about her subjective belief, δ ̸= 0, but also that
the subjective probability µ may deviate from its objective counterpart.

1.3 Updating of Ambiguous Beliefs

Definition 2. The generalized Bayesian update rule for determining the conditional
capacity ν (A | B), B ∈ F , for a given prior capacity ν is given as follows: for all
A ∈ F ,

ν (A | B) =
ν (A ∩B)

ν (A ∩B) + 1− ν (A ∪ ¬B)
.

Observation 1. Let µ (B) > 0. An application of the generalized Bayesian update
rule to a neo-additive prior results in the posterior belief

ν (A | B) = δB · λ+ (1− δB) · µ (A | B)

whereby

δB =
δ

δ + (1− δ) · µ (B)
.
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Proof. Let A,B /∈ {∅,Ω} and A ∩B ̸= ∅. Then

ν (A | B) =
δ · λ+ (1− δ) · µ (A ∩B)

δ · λ+ (1− δ) · µ (A ∩B) + 1− (δ · λ+ (1− δ) · µ (A ∪ ¬B))

=
δ · λ+ (1− δ) · µ (A ∩B)

1 + (1− δ) · (µ (A ∩B)− µ (A ∪ ¬B))

=
δ · λ+ (1− δ) · µ (A ∩B)

1 + (1− δ) · (µ (A ∩B)− µ (A)− µ (¬B) + µ (A ∩ ¬B))

=
δ · λ+ (1− δ) · µ (A ∩B)

1 + (1− δ) · (−µ (¬B))

=
δ · λ+ (1− δ) · µ (A ∩B)

δ + (1− δ) · µ (B)

= δB · λ+ (1− δB) · µ (A | B) .

2 Data

According to our model two different types of data are required for the empirical
analysis: (i) subjective conditional beliefs to live until target age and (ii) predicted
objective conditional probabilities to live from age r to age r+1 for all r = j, . . . ,m−1.
We here describe our data sources and the methodologies we apply to construct these
data.

2.1 HRS Data

The HRS is a national representative panel survey of individuals aged 50 and older
and their spouses. In addition to respondents from eligible birth years, the survey
interviewed the spouses or partners of the respondents, regardless of age. Thus,
some (mostly female) individuals are younger than 50 and few, younger than 40. In
our application we focus on the target group of the HRS and therefore only look at
individuals of age 50 and older. Some respondents of the above question were 90 years
old at the time of interview. We do not include these observations in our analysis.

Younger HRS interviewees were also asked about their probabilities to live until
age 75. Some of these respondents have given inconsistent answers at certain points
of time as their self-reported probabilities to live until 75 are lower than the self-
reported probabilities to live until 80 or 85. We excluded these cases of evidently
inconsistent answering patterns. Furthermore, in some cases, individuals reported
the same probability to live until age 75 as to live until age 80 or 85. As this
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answering pattern may be due to pure rounding and is not strictly inconsistent with
our theoretical model, we keep these observations in the sample.

The presence of focal point answers in our data is discussed in Subsection 4.3 of
our paper.

2.2 Cohort Life Tables

We adopt the Lee-Carter procedure (Lee and Carter 1992) to estimate trends in
mortality and to project survival rates into the future. The procedure allows us
to describe and to project the development of age-specific mortality rates over time
within a parsimonious framework. Basically, the model splits mortality rates into
age-specific components that are constant over time and a time varying survival
index capturing the development of mortality. Then, one can extrapolate the time
series of the mortality index by means of a suitable time series model. Future age-
specific mortality rates can be recovered by linking the projected mortality index to
the age-specific components.

To describe the methodology, we now introduce a time index t. Following Lee and
Carter (1992) we decompose the average objective age-specific survival probability in
period t as

log(π⋆
t,r,r+1) = ar + brdt

where ar and br are the age-specific constants and where dt is the time specific factor.
We opt for a parsimonious representation of the time series process of dt and assume
that dt follows a unit root process with drift

dt = θ + dt−1 + ϵt.

where ϵ ∼ N (0, σ2
ϵ).

We assign objective survival probabilities to each respondent in our HRS panel in
each wave τ ∈ {2000, 2002, 2004} as follows. We estimate for each wave τ , sex specific
values of âr, b̂r, θ̂, σ̂ϵ and calculate predicted values of π̂⋆

t,r,r+1 using data only until
period τ . We then proceed to the next wave and update the objective information
also using the data for the two years in between periods τ and τ +2. Our predictions
of future objective survival probabilities, π̂⋆

t,r,r+1, are calculated by iterating forward
on

d̂t = θ̂ + d̂t−1

and
π̂⋆
t,r,r+1 = exp

(
âr + b̂rk̂t

)
.
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While we ignore uncertainty of our estimates of the age-vectors ar and br, we
account for uncertainty of the objective data by calculating standard deviations and
confidence intervals of θ̂ by bootstrapping. This uncertainty is also reflected in our
estimates. Table 1 reports the sex and wave specific point estimates θ̂ and the re-
spective standard deviations. Estimated parameter values for waves 1, 2 and 3 are
based on population data from HMD and SSA for 1900 − 2000, 1900 − 2002 and
1900− 2004, respectively.

Table 1: Parameter estimates of θ̂

Men Women

θ̂ σ̂(θ) θ̂ σ̂(θ)
wave 1 -1.4186 0.5336 -1.8586 0.5339
wave 2 -1.4123 0.5426 -1.8287 0.5336
wave 3 -1.4518 0.4927 -1.8462 0.5103

Notes: Standard errors of θ̂ are calculated from 500 bootstrap iterations.

Source: Own calculations based on SSA and HMD.

Figure 1 shows data on, and predicted values for, the remaining life expectancy at
age 65 for wave 2002. The dashed lines are the bootstrapped 95% confidence intervals.
The new information on objective survival probabilities between waves only leads to
small changes in these predictions. Results for other years are therefore not shown.
Furthermore, life expectancy at birth and the remaining life-expectancies at other
ages display similar trends whereby the trend is increasing with age.

2.3 Focal Point Answers

2.4 Hazard rates

We show hazard rates in Figure 3, for men in panel (a) and for women in panel
(b) between waves 2002 and 2004 for our full sample. The wiggles in the HRS data
(dashed lines) are a consequence of relatively small sample size. Evidently, the HRS
hazard rates correspond with the mortality rates in the population. The pattern is
similar for the hazard rates between waves 2000 and 2002 (and also for our sample
corrected by focal point answers) and therefore not shown.1

1If anything, we find for ages above 75 slightly higher mortality rates in the HRS between waves
2000 and 2002 than in the population which gives even more support to our interpretation of the
data as “optimism” at higher ages.
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Figure 1: Predicted life expectancy at age 65 in year 2002
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Notes: Thin dashed lines are 95% confidence intervals obtained from 500 bootstrap iterations.

Source: Own calculations based on HMD and SSA data.

Figure 2: Answer pattern
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(b) Women
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Figure 3: Objective survival rates in 2002-2003: HRS data versus population averages
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(b) Women
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Notes: Solid line: population wide hazard rates (mortality rates) for 2002-2003. Dashed line: HRS

hazard rates (mortality rates) between waves 2002 and 2004.

Source: Own calculations based on HRS, SSA and HMD data.

2.5 Cohort Effects

To accommodate the criticism that cohort effects may drive the patterns in the data,
Figure 4 presents the subjective beliefs for various cohorts. As there are no clear-cut
gaps between the respective line segments that represent birth cohorts, this stylized
evidence can not be regarded as an indication for relevant cohort effects.

3 Additional Results

3.1 Speed of the Learning Process

We investigate sensitivity of our results with respect to the speed of the Bayesian
learning process. That is, we consider a specification in which the initial age is 20
as in our baseline results but the speed of the learning process is now ten times
faster in that we assume n(h) = 10 · h. Results for this specification, reported in
Table 2, indicate that the speed of the learning process interacts with our estimate
of the degree of likelihood insensitivity, δ, whereas the other parameters are roughly
unaffected. More precisely, we find that, when speed of learning is ten times faster
than in our baseline specification, the estimate of parameter δ is about 10 times
lower. Again, this mechanically follows from the specification of the learning model.
Interpretation of the point estimate of ϕ is affected. ϕ = 0.89 for men (ϕ = 0.9
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Figure 4: Subjective survival expectations by cohorts

(a) Men
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(b) Women
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Notes: These graphs display subjective beliefs for various birth cohorts.

Source: Own calculations based on HRS.

for women) means that a person with one year of experience at age 20 estimates
the additive probability to survive from age 50 to age 80 (for which m − j = 30)

to be 2ϕm−j+10·h
2+10·h · 100% = 2ϕ30+10

12
· 100% = 92.4% (92.2%) of the objective data.

Resulting degrees of likelihood insensitivity and the implied curvature parameter of
the probability weighting function are shown in Figure 5. These results do not differ
much from the baseline specification.
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Table 2: Parameter estimates: Higher learning speed

Men Women

Ψ̂ σ̂(Ψ) ĈI(Ψ) Ψ̂ σ̂(Ψ) ĈI(Ψ)
Initial bias: ϕ 0.893 0.002 [ 0.890 0.897 ] 0.901 0.002 [ 0.899 0.906 ]
Likelihood insens.: δ 0.002 0.000 [ 0.002 0.003 ] 0.002 0.000 [ 0.002 0.003 ]
Degree of optimism: λ 0.438 0.011 [ 0.417 0.459 ] 0.386 0.011 [ 0.364 0.409 ]
R2 0.039 0.003 [ 0.032 0.046 ] 0.062 0.003 [ 0.056 0.067 ]
R̄2 0.776 0.037 [ 0.662 0.812 ] 0.929 0.011 [ 0.890 0.931 ]

Notes: These results are based on a specification of our model with n(h) = 10h rather than n(h) =

h. Ψ̂ are point estimates of model parameters, σ̂(Ψ) is the respective standard deviation and

ĈI(Ψ) is the respective 95% confidence interval. Standard errors are calculated by bootstrapping

the subjective and objective survival probabilities by drawing with replacement in 500 bootstrap

iterations.

Source: Own calculations based on HRS, SSA and HMD data.

Figure 5: Likelihood insensitivity and implied probability weighting factor: Higher
learning speed

(a) Likelihood insensitivity (δh)
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(b) Implied probability weighting factor (ξh)
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Notes: Thin dashed lines are 95% confidence intervals obtained from 500 bootstrap iterations.

Source: Own calculations based on HRS, HMD and SSA data.
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3.2 Decreasing Marginal Experience

We build on the earlier specification of the experience function and now combine it
with decreasing marginal experience by specifying n(h) = 10 ·

√
h. Results for this

specification are summarized in Table 3 and Figure 6. Implied estimates of initial
ambiguity are δ = 0.016 for both sexes and are thereby closer to our benchmark
results. This is so because the overall level of ambiguity for biological ages [50, . . . , 90]
is similar to the other specifications but increases less, see Figure 6. Otherwise, results
are not affected much.

Table 3: Parameter estimates: Decreasing marginal experience

Men Women

Ψ̂ σ̂(Ψ) ĈI(Ψ) Ψ̂ σ̂(Ψ) ĈI(Ψ)
Initial bias: ϕ 0.918 0.002 [ 0.915 0.921 ] 0.922 0.002 [ 0.919 0.926 ]
Likelihood insens.: δ 0.016 0.001 [ 0.014 0.019 ] 0.016 0.001 [ 0.014 0.018 ]
Degree of optimism: λ 0.451 0.011 [ 0.430 0.470 ] 0.399 0.012 [ 0.374 0.423 ]
R2 0.041 0.003 [ 0.035 0.048 ] 0.064 0.003 [ 0.058 0.070 ]
R̄2 0.805 0.035 [ 0.695 0.835 ] 0.950 0.010 [ 0.913 0.950 ]

Notes: These results are based on a specification of our model with n(h) = 10
√
h rather than n(h) =

h. Ψ̂ are point estimates of model parameters, σ̂(Ψ) is the respective standard deviation and

ĈI(Ψ) is the respective 95% confidence interval. Standard errors are calculated by bootstrapping

the subjective and objective survival probabilities by drawing with replacement in 500 bootstrap

iterations.

Source: Own calculations based on HRS, SSA and HMD data.
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Figure 6: Likelihood insensitivity and implied probability weighting factor: Decreas-
ing marginal experience

(a) Likelihood insensitivity (δh)
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(b) Implied probability weighting factor (ξh)
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Notes: Thin dashed lines are 95% confidence intervals obtained from 500 bootstrap iterations.

Source: Own calculations based on HRS, HMD and SSA data.
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3.3 Hump-Shaped Experience Experience

Finally, we specify a hump-shaped experience function of the form n(h) = β0 + β1 ·
h + β2 · h2. This specification is a simple reduced form representation of a learning
model in which depreciation of memory dominates at some point. We determine
parameters {βi}3i=1 such that the level of the experience function peaks at age 65 (h =
46). We further require the same level as for the square root specification at ages 50
and 65 (h = 31 and h = 46). This gives the conditions n(31) = β0+β1 ·31+β2 ·312 =
10, n(46) = β0+β1 · 46+β2 · 462 = 10 ·

√
46 and n′(46) = β1+β2 · 2 · 46 = 0. Results

are summarized in Table 4 and Figure 7. The hump-shaped experience function
translates into a hump-shaped likelihood insensitivity. This also implies a u-shaped
curvature parameter of the associated probability weighting function.

Table 4: Parameter estimates: Hump-shaped experience

Men Women

Ψ̂ σ̂(Ψ) ĈI(Ψ) Ψ̂ σ̂(Ψ) ĈI(Ψ)
Initial bias: ϕ 0.939 0.002 [ 0.934 0.943 ] 0.935 0.006 [ 0.918 0.941 ]
Likelihood insens.: δ 0.025 0.002 [ 0.022 0.030 ] 0.021 0.001 [ 0.019 0.023 ]
Degree of optimism: λ 0.462 0.008 [ 0.446 0.477 ] 0.426 0.012 [ 0.401 0.450 ]
R2 0.043 0.003 [ 0.036 0.049 ] 0.064 0.003 [ 0.058 0.070 ]
R̄2 0.817 0.036 [ 0.702 0.845 ] 0.946 0.012 [ 0.900 0.949 ]

Notes: These results are based on a specification of our model with n(h) = β0 + β1 · h + β2 · h2

rather than n(h) = h. Ψ̂ are point estimates of model parameters, σ̂(Ψ) is the respective standard

deviation and ĈI(Ψ) is the respective 95% confidence interval. Standard errors are calculated by

bootstrapping the subjective and objective survival probabilities by drawing with replacement in

500 bootstrap iterations.

Source: Own calculations based on HRS, SSA and HMD data.
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Figure 7: Likelihood insensitivity and implied probability weighting factor: Hump-
shaped experience

(a) Likelihood insensitivity (δh)
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(b) Implied probability weighting factor (ξh)
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Notes: Thin dashed lines are 95% confidence intervals obtained from 500 bootstrap iterations.

Source: Own calculations based on HRS, HMD and SSA data.
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