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Abstract

The paper proposes parametric two-step procedures for assessing the stability of

cross-sectional dependency measures in the presence of potential breaks in the marginal

distributions. The procedures are based on formerly proposed sup-LR tests in which

restricted and unrestricted likelihood functions are compared with each other. We

derive suitable test statistics in different settings, i.e., in the case of bivariate normal

and t distributions as well as in the case of copulae. The properties of the test statistics

(size, power and the relevance of the residual effect) are analyzed and compared with

existing methods in various Monte Carlo simulations.
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1 Introduction

Testing stability of cross-sectional dependence in multivariate time series models has received

considerable attention over recent years, both in terms of methodological advance and in

applications. In financial econometrics, those methods find application to asset price data

subject to financial crisis or policy shocks. In the context of financial crisis, this phenomenon

is usually called shift contagion and has been formally analyzed first by King and Wadhwani

[1990] who use recursively calculated sample correlations to assess stability of the correlation

over the considered sample. In an important contribution, Forbes and Rigobon [2002] stress

that in equity markets increases in volatility of some equity market often precede an increase

in correlation (or some other dependency measure). Therefore, before testing for constant

correlation, potential changes in variances have to be taken into account. These procedures

test constancy of the marginal distributions in a first step, eliminate potential structural
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changes in the margins by suitable transformations and then test constancy of the cross-

sectional dependence in step two. We will call such procedures two-step testing procedures

in the following.

In general, there exist two fundamentally different approaches in a structural change context:

likelihood-ratio-type tests that rely on some parametric model and tests imposing hypothesis

on moments or quantile exceedance-probabilities, that use cumulated sums of empirical

counterparts.

A seminal contribution for the first approach is Andrews [1993] who derived asymptotic tests

for (partial) structural changes in a generalized method of moments framework. One class of

these tests are supremum likelihood ratio type (sup-LR-type) tests. In a multivariate model,

parameters are partitioned into those that change under the null hypothesis of constancy

and the alternative and nuisance-parameters that are invariant under null and alternative

hypothesis. For any change-point candidate, the sample is divided into two sub-samples

and parameter stability is rejected, if the difference between two GMM objective functions

becomes too large. This method has first been applied in the context of constant correlation

by Dias and Embrechts [2004].

Within the latter class one can distinguish tests imposing constancy on cross-moments of the

multivariate system and tests imposing constancy of the copula. Stability is rejected if the

fluctuations in the cumulated sums of their empirical counterparts exceed certain critical

values. Important contributions in an econometric context include Aue et al. [2009] for

covariances, Wied et al. [2012b] for correlations, Rémillard [2010] and Bücher et al. [2014]

for copulae.

In both frameworks, two-step procedures have been proposed. While the latter framework

was tackled in Demetrescu and Wied [2018+], Blatt et al. [2015] worked in the first frame-

work by analyzing shift contagion in VAR models using the multivariate normal distribution.

Our aim is to continue the work in Blatt et al. [2015] by deriving appropriate supLR-type

statistics in different parametric models, which are typically used for financial time series

data. The motivation for using such tests is that, if the assumed model is correct and dif-

ferent from a normal distribution model, a parametric test might have higher power than a

nonparametric test. To the best of our knowledge, test statistics for different multivariate

distributions have not been explored in the literature before.

Critical values for the tests are obtained by bootstrap approximations. In particular, these

bootstrap approximations are used because it cannot be expected that the usage of trans-

formed/standardized data (using piecewise constant variance estimators, GARCH-residuals

or empirical cumulative distribution functions) in step 2 leaves the asymptotics unaltered.

While Demetrescu and Wied [2018+] derived analytic results for the residual effects in non-

parametric models (see also Duan and Wied, 2018), the first contribution of this paper is to

quantify the impact of transforming the original data by Monte Carlo simulations.

Secondly, after showing that the residual effect matters quantitatively in commonly used

models, we move to compare power of the different approaches after correcting for the

invalidity of standard asymptotics. Moreover, the Monte Carlo study compares the ability

of parametric and non-parametric procedures to detect and date structural changes in the

sequential setup we are interested in. Such a simulation study extends simulation results

in Galeano and Peña [2007] who compare Gaussian sup-LR and fluctuation tests in the

case of variance/covariance changes. Apart from Demetrescu and Wied [2018+], we also
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include the recently proposed tests for constant copulas by Bücher et al. [2014] (modified

for a two-step-procedure) in our comparison.

If test and estimation procedures are constructed with applications to finance or macroe-

conomics in mind, it is natural to study their behaviour in settings that feature typical

characteristics of financial data. In a first simulation study parametric and non-parametric

methods building on the joint distribution function are examined using data generated from

Gaussian and t-distributions, resembling financial return data with low observation fre-

quency. Performance of copula-based methods is compared under non-linear dependence by

generating data from t-copulae in a second simulation study. Due to its practical relevance,

dimensionality effects are taken into account. Some attention is devoted to the situations

where the test procedures are applied under misspecification, such as choosing the wrong

joint distribution function or copula within the sup-LR framework.

Many results however carry over from models using the joint distribution function or em-

pirical moments to models using copulae: more elaborate parametric models should only be

used if the sample size permits reliable estimation and one is reasonably confident about the

goodness-of-fit of the model. If one is confident in applying parametric methods, copula-

based sup-LR tests can be preferred to distribution-function based sup-LR tests. Should

one operate in smaller samples, sup-LR tests under the simplest parametric assumption,

namely that of a multivariate Gaussian distribution or copula, provide a suitable alternative

to non-parametric methods. In many situations, simulation evidence does not show uniform

dominance of either test, so one might use both tests and use a simple error correction

scheme like the Boole-Bonferroni method to correct for multiple testing of the same hypoth-

esis. Results are more obvious when it comes to estimating change-points: in almost every

considered case, the parametric sup-LR method yields better estimators in terms of bias and

variance, irrespectively of correct or incorrect model specification. If precise knowledge on

the timing of regime-shifts is of central importance, for example in a portfolio management

situation, one should rather use a parametric method. Even if one does not want to rely on

a certain specification, one could still use the sup-LR framework under a Gaussian copula

assumption to achieve useful results.

The structure of the paper is as follows: First, section 2 introduces the hypotheses pairs used

in the two-step procedure. In section 3, we introduce the sup-LR test framework used for

our applications and give some analytical high-level background. Next, we discuss certain

parametric specifications, e.g. the bivariate t-distribution. Section 4 presents the simulation

studies, while illustrations of the discussed methods are given in section 5, using commodity

and stock return data from the 1990s. Section 6 gives a conclusion, while the supplementary

material gives an overview about the different non-parametric test frameworks (moment-

based fluctuation and empirical copula tests) used in the simulation study. With regard to

the moment-based fluctuation test, there are some new analytical derivations. Moreover,

the supplementary material provides some results on using the sup-LR framework under

volatility clustering and, based on this results, a second application on daily stock returns

of EURO STOXX 50 stock returns.
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2 Setup

Let Xt ∼ (δ(t), θ(t)) be a multivariate random variable with dimension m, δ(t) denote a

parameter vector shaping its dependence structure and θ(t) = [θ′1,(t), ..., θ
′
m,(t)]

′ denote a

vector consisting of the parameters shaping the marginal distributions, indexed by i. Let

the change-point corresponding to dimension i be denoted by li and lD the change-point

of the dependency-structure and further assume l1 ≤ l2 ≤ ... ≤ lm ≤ lD. The particular

order of change-points merely eases notation and does not lead to loss of generality, since

the asymptotics in sequential procedures are not affected from switching the change-point

order. Denoting the time index by t, one formally has

Xt
i.i.d.∼ (θ1,1, θ2,1, · · · , θm,1, δD,1) for t = 1, ..., l1

Xt
i.i.d.∼ (θ1,2, θ2,1, · · · , θm,1, δD,1) for t = l1 + 1, ..., l2

· · · · · ·

Xt
i.i.d.∼ (θ1,2, θ2,2, · · · , θm,2, δD,1) for t = lm + 1, ..., lD

Xt
i.i.d.∼ (θ1,2, θ2,2, · · · , θm,2, δD,2) for t = lD, ..., n

with at most m + 1 asymptotically distinct break points. Note that, defining λi := li
n ,

two change-points are asymptotically distinct if λ1 6= λ2 as n → ∞. The ordering of the

break dates reflects a situation where shift contagion is present: at first, there is a change in

mean and variance of one variable (e.g. a stock market index of country A), followed by a

change in the second (country B), third (country C) variable and so forth. The correlation

between both markets changes at some later point in time, lD. The following hypothesis

pairs are relevant for the sequential procedures under consideration and have appeared in

this or slightly different forms throughout the existing literature:

Hypothesis Pair 1 (Marginal Distributions). For every margin i, we test:

H0 : θi,(1) = ... = θi,(n) against

H1 : θi,1 = θi,(1) = ... = θi,(li) 6= θi,(li+1) = ... = θi,(n) = θi,2

The CUSUM of squares test from Wied et al. [2012a] obtains if θi = σ2
i .

Hypothesis Pair 2 (Dependency, Constant Margins).

H0 : δ(1) = ... = δ(n) against

H1 : δ1 = δ(1) = ... = δ(lD) 6= δ(lD+1) = ... = δ(n) = δ2

with θi,(1) = ... = θi,(n) ∀ i = 1, ...,m

If Pearson’s correlation matrix is used to measure cross-sectional dependency, Hypothesis

Pair 2 is in line with the test proposed in Wied et al. [2012b] who extend the covariance test

from Aue et al. [2009] to moment hypothesis on correlations. In a shift contagion situation

it comes natural to extend the first two hypothesis pairs into a joint framework:

Hypothesis Pair 3 (Two-Step Testing Procedure).

H0 : δ(1) = ... = δ(n)
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θ1,(1) = ... = θ1,(l1) 6= θ1,(l1+1) = ... = θ1,(n)

· · · · · · · · ·

θm,(1) = ... = θm,(lm) 6= θm,(lm+1) = ... = θm,(n) against

H1 : δ1 = δ(1) = ... = δ(lD) 6= δ(lD+1) = ... = δ(n) = δ2

θ1,(1) = ... = θ1,(l1) 6= θ1,(l1+1) = ... = θ1,(n)

· · · · · · · · ·

θm,(1) = ... = θm,(lm) 6= θm,(lm+1) = ... = θm,(n)

Hypothesis Pair 3 allows for changes in the marginal distributions under both the null and

alternative hypothesis. In particular, there is no stationarity under the null hypothesis.

Under the null, we have constant dependence and under the alternative, we have a two-

regime model in the dependence structure.

3 Framework

In this section, we propose a framework which uses fully specified parametric models in

order to evaluate parameter stability. The framework goes back to the seminal contribution

of Andrews [1993] who suggests a method which is essentially applicable for all GMM-type

estimators, such as maximum-likelihood and pseudo-maximum-likelihood. The framework is

the following: The sample is divided into two sub-samples for any j = π ·n, π ∈ [π, π], where

parameters are divided into those that change under the null and alternative hypothesis and

nuisance parameters that are invariant under null and alternative, denoted by η. Parameter

constancy is tested by forming a sequence of likelihood-ratio test statistics for all change

point candidates. The testing function is given by the log-likelihood function and the test

statistic for a fixed j is given by the difference of the log-likelihood under the restricted

and the unrestricted ML- or pseudo-ML-estimator. No restriction here means that the

parameter, which is tested for constancy, is calculated based onX1, . . . , Xj andXj+1, . . . , Xn

separately. We note that, while the framework is based on Andrews [1993], that paper does

not look directly at these test statistics, but on “supLR-type” statistics which are based

on the differences of GMM-objective functions evaluated at the restricted and unrestricted

estimator. We use the likelihood functions themselves in order to avoid calculating the scores

for each of our parametric models.

In the following, we shortly present the parametric frameworks for the first two hypothesis

pairs, which are known from Andrews [1993]. Hypothesis Pair 3 is discussed afterwards.

Testing constancy of marginal distributions, i.e. Hypothesis Pair 1, is performed with the

test statistic

Aj := Aj(θ̂0, θ̂1, θ̂2, η̂) := Aj(X; θ̂0, θ̂1, θ̂2, η̂) := 2
(
L(X; θ̂1, θ̂2, η̂)− L(X; θ̂0, η̂)

)
(3.1)

with

L(X; θ̂1, θ̂2, η̂) =

j∑
t=1

lt(θ̂1, η̂) +

n∑
t=j+1

lt(θ̂2, η̂) and
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L(X; θ̂0, η̂) =

n∑
t=1

lt(θ̂0, η̂).

Here, li(·) denotes the contribution to the log-likelihood from observation i. Moreover,

θ̂1 = θ̂1,j is the ML-estimator for θ based on X1, . . . , Xj , where j := [πn] (the floor function

is omitted in the following for brevity) and θ̂2 = θ̂2,j the one based on Xj+1, . . . , Xn, θ̂0 the

one based on X1, . . . , Xn and η̂ the ML estimator based on X1, . . . , Xn for some constant

nuisance parameter η.

Hypothesis Pair 2 is tested with the similar test statistic

Aj(δ̂0, δ̂1, δ̂2, η̂) = 2
(
L(X; δ̂1, δ̂2, η̂)− L(X; δ̂0, η̂)

)
(3.2)

We now state a theorem concerning the asymptotic distribution of the sequence of LR-

statistics. The result can be indirectly inferred from Andrews [1993] and Andrews and

Ploberger [1995], as Andrews and Ploberger [1995] state that the asymptotic distribution

is the same as that of the sup-Wald and the sup-LM statistics which were introduced in

Andrews [1993] and shown to converge to the same limit in our Theorem 1. On the other

hand, we provide a direct proof. Before, some standard assumptions are imposed.

Assumption 1. For Hypothesis Pair 1, it holds under the null hypothesis:

1. The true parameter θ0 lies inside a set Θ ⊂ Rk.

2. The estimators θ̂1, θ̂2 and θ̂0 fulfill a central limit theorem, i.e.,

√
n

θ̂1 − θ0

θ̂2 − θ0

θ̂0 − θ0


converges to

1
πH
−1/2Γk(π)

1
1−πH

−1/2Γk(1− π)

H−1/2Γk


with H = − limn→∞

1
n

∑n
i=t

∂2

∂θ∂θ′ lt(θ0) and Γk denoting a k-dimensional vector of

independent Brownian motions.

3. The third derivatives of lt(θ) with respect to θ exist and are uniformly bounded for

θ ∈ Θ and = 1, . . . , n.

A similar assumption holds for Hypothesis Pair 2.

Note that the expression of the limits appears to be natural if it can be assumed that

θ̂1,j−θ0 can be linearized as
(∑j

t=1
∂2

∂θ∂θ′ lt(θ0)
)−1∑j

t=1
∂
∂θ lt(θ0)+op(

√
n) and θ̂2,j−θ0 can

be linearized as
(∑n

t=j+1
∂2

∂θ∂θ′ lt(θ0)
)−1∑n

t=j+1
∂
∂θ lt(θ0) + op(

√
n). This is the case in the

models we consider in 3.

Theorem 1. Under Assumption 1, it holds for the sequence of LR-statistics that

Aπn ⇒d
(Γk(π)− πΓk(1))′(Γk(π)− πΓk(1))

π(1− π)
, (3.3)
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in D[0, 1], the space of cádlág-functions over the unit interval. Moreover, k = dim(θ0) for

Hypothesis Pair 1 and k = dim(δ0) for Hypothesis Pair 2. The limit process is called a

standardized tied-down Bessel process of order k, denoted by Bk(π)

Proof: It holds

Aπn =
(
θ̂ − θ̂1

)′ πn∑
t=1

∂2

∂θ∂θ′
lt(θ̂1)

(
θ̂ − θ̂1

)
+
(
θ̂ − θ̂2

) n∑
t=πn+1

∂2

∂θ∂θ′
lt(θ̂2)

(
θ̂ − θ̂2

)
+op(1).

This term converges in distribution to(√
πΓk(1)− 1√

π
Γk(π)

)′(√
πΓk(1)− 1√

π
Γk(π)

)
+

(√
1− πΓk(1)− 1√

1− π
Γk(1− π)

)′(√
1− πΓk(1)− 1√

1− π
Γk(1− π)

)
,

which has the same distribution as

(Γk(π)− πΓk(1))′(Γk(π)− πΓk(1))

π(1− π)
.

�

As we have the factor π(1 − π) in the denominator, it is clear that Π = [π, π] has to be a

strict subset of the unit interval. To test the null hypothesis of parameter constancy against

a single unknown change point, the sup-functional is applied to the test sequence of LR-test

statistics and, in the framework of Andrews [1993],

sup
π·n≤j≤π·n

Aj →d sup
Π
Bk(π). (3.4)

So the null hypothesis is rejected when the (1 − α)-quantile associated with the limiting

process (3.3), defined by cα = P (supπ∈Π Bk > cα) = α is exceeded. Critical values are

tabulated in Andrews [1993] and depend on the degrees of freedom of the limiting process

and the considered interval Π of candidate change points. In every situation considered in

the following, the supremum of {Aj} is also used to estimate the change-point by

l̂ = arg sup
πn≤j≤πn

Aj (3.5)

In practical applications sup- and argsup-functional are replaced by the max- and argmax-

functional, respectively. Following the suggestion of Andrews [1993] the set of potential

change points is chosen to be Π = [0.15, 0.85], the general case will however be maintained

in the notation.

Our testing idea for analyzing Hypothesis Pair 3 is similar to that of Hypothesis Pair 2. The

test statistic is given by

sup
π·n≤j≤π·n

Aj (3.6)

with Aj given in (3.2), but with the original data replaced by appropriate residuals. Here,

“residuals” implies that we transform marginal time series such that they do not exhibit
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breaks any more and also the dependence structure does not change. This means that we

are interested in the dependence structure of Zt = f(Yt, t/n, θ), but can only observe Xt =

f(Yt, t/n, θ̂). The type of transformations as well as the particular test statistics depend on

the respective parametric specification, which are derived in the following subsections. For

example, the setting allows for time-varying marginal variances if θ = θ1 for t ≤ j = πn and

θ = θ2 for t > j = πn. Demetrescu and Wied [2018+] discuss such models in detail and

also argue analytically and with numerical evidence why it is not possible to test Hypothesis

Pair 3 with the standard method of Andrews [1993] who assumes stationarity under the null

hypothesis.

Allowing for unknown marginal parameters, which have to be estimated, introduces compli-

cations concerning the limit distribution. As pointed out in many studies on that matter,

using estimated parameters and change-point locations in the first step potentially affects

estimation of parameters and change-point locations in the second step, see Qu and Perron

[2007], Chan et al. [2009] and Demetrescu and Wied [2018+].

In our setting, the reason for getting a residual effect is the following: Define with δ̃(π) =

(δ̂1, δ̂2) the vector of unrestricted ML-estimators, such that lt(δ̃(π), θ̂) := lt(δ̂1, θ̂, η̂) for

t ≤ j = πn and lt(δ̃(π), θ̂) := lt(δ̂2, θ̂, η̂) for t > j = πn. To ease notation, we write δ̂ := δ̂0

and omit the dependency of the likelihood contributions on the nuisance parameter η̂. We

impose an additional assumption, which appears to be natural given that both δ̃(π) and δ̂

are consistent for δ under the null hypothesis. The most crucial part of this assumption is

part 3, which we illustrate in section 3.1 below.

Assumption 2. For Hypothesis Pair 3, it holds under the null hypothesis:

1. θ̂1, θ̂2 and θ0 satisfy a central limit theorem similar to Assumption 1.2, with H replaced

by

H∗ = − lim
n→∞

1

n

n∑
t=1

∂2

∂θ∂θ′
lt(δ̃(π), θ0).

2. The third derivatives of lt(·, θ) with respect to θ exist and are uniformly bounded for

θ ∈ Θ and i = 1, . . . , n.

3. The process

Bπn :=
√
n(θ̂ − θ) 1√

n

n∑
t=1

∂

∂θ

(
lt(δ̃(π), θ)− lt(δ̂, θ)

)
converges to some limit process R(π) in D[0, 1].

4. The process Cπn := ∂2

∂θ∂θ′
1
n

∑n
t=1

(
lt(δ̃(π), θ)− lt(δ̂, θ)

)
converges to zero in probabil-

ity.

Then, we have the following theorem:

Theorem 2. Under Assumption 2, it holds for Aj(δ̃(π), δ̂, θ̂) := Aj(δ̃(π), δ̂, θ̂, η̂) that

Aπn(δ̃(π), δ̂, θ̂, η̂)⇒d Bk(π) +R(π).

with k = dim(δ0) and the residual effect is given by R(π).
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Proof: A Taylor approximation of Aπn(δ̃(π), δ̂, θ̂, η̂) in the third component around θ yields

Aπn(δ̃(π), δ̂, θ̂) =

n∑
t=1

(
lt(δ̃(π), θ̂)− lt(θ̂, θ̂)

)
=

n∑
t=1

(
lt(δ̃(π), θ)− lt(θ̂, θ)

)
+

n∑
t=1

(
∂

∂θ

(
lt(δ̃(π), θ)− lt(δ̂, θ)

)
(θ̂ − θ)

)

+
1

2

n∑
t=1

(θ̂ − θ)′ ∂2

∂θ∂θ′

(
lt(δ̃(π), θ)− lt(δ̂, θ)

)
(θ̂ − θ)

+ op(1)

= Aπn(δ̃(π), δ̂, θ) +Bπn +
1

2
Cπn + op(1).

It holds that

Cn(π) =
√
n(θ̂ − θ)′ ∂2

∂θ∂θ′
1

n

n∑
t=1

(
lt(δ̃(π), θ)− lt(δ̂, θ)

)√
n(θ̂ − θ)

Then, Cn(π)⇒p 0 and Bn(π)⇒d R(π). So, Aπn ⇒ Bk(π) +R(π). �

Simulation evidence supports using a residual bootstrap scheme, which leads to correctly

sized tests. Under the assumption of proper transformation prior to step two, we can use

a simple residual bootstrap scheme, which is now briefly lined out: Let a sample from

Ẑ1, ..., Ẑn, drawn with replacement, be denoted by Ẑ∗1 , ..., Ẑ
∗
n. For any bootstrap repetition

b, let the sup-LR test statistic from (3.1) or (3.2) be denoted by supAbj , such that the p-value

follows as

p̂ =
1

B

B∑
b=1

1{supAbj>supAj} (3.7)

If the estimation error in the first step could be ignored, it would be reasonable to use the

same critical values as in Hypothesis Pair 2, because the difference of estimated parameters

under alternative and null remains exactly the same.

Testing parameter constancy is straightforward in financial return data, if it can be rea-

sonably assumed that these data represent draws from a weakly stationary distribution.

Note that the i.i.d. assumption is not crucial here as long as weak stationarity is satisfied,

since correctly-sized can be obtained by using an appropriate covariance-matrix, as pointed

out for example by Blatt et al. [2015]. With this preliminary remarks out of the way, the

sup-LR framework obviously requires assumption of a particular parametric model, while

the particular moments which are subject to structural changes need to be specified in the

fluctuation test framework

3.1 Gaussian Distribution

The easiest choice is a multivariate Gaussian, parametrized in terms of means, variances

and correlations. Although most likely not the best choice in many cases, it provides a good

starting point and offers some useful insight into more complicated models. We impose the
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regularity condition, that variances are bounded away from zero. Decomposing the entire

covariance matrix into

Σ = S′PS =


σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σm




1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n

...
. . . 1

...

ρ1n ρ2n · · · 1



σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σm


enables us to easily separating inference on marginal parameters and correlation matrix by

writing

Xt
i.i.d.∼ N(θ1,1, θ1,1, · · · , θm,1, P1) for t = 1, ..., l1

Xt
i.i.d.∼ N(θ1,2, θ2,1, · · · , θm,1, P1) for t = l1 + 1, ..., l2

· · · · · ·

Xt
i.i.d.∼ N(θ1,2, θ2,2, · · · , θm,2, P1) for t = lm + 1, ..., lD

Xt
i.i.d.∼ N(θ1,2, θ2,2, · · · , θm,2, P2) for t = lD, ..., n

and testing Hypothesis Pair 3 with θi = (σ2
i , µi) and δi = Pi. We start with testing constant

margins: from the probability density of a Gaussian random variable

f(Xi,t;µi, σ
2
i ) =

1√
2πσ2

i

exp
(
− (Xi,t − µi)2

2σ2
i

)
the log-Likelihood for full-sample estimation is given by

L(Xi, µ0, σ
2
0) = −n

2
log(2π)− n

2
log(σ2

0)−
n∑
t=1

(Xt,i − µ0)2

2σ2
0

Dividing the sample at any j yields

L(Xi, µi,1, µi,2, σ
2
i,1, σ

2
i,2) =− j

2
log(2π)− j

2
log(σ2

i,1)−
j∑
t=1

(Xi,t − µi,1)2

2σ2
i,1

− n− j
2

log(2π)− n− j
2

log(σ2
i,2)−

n∑
t=j+1

(Xi,t − µi,2)2

2σ2
i,2

for the log-likelihood. It should be noted, that under serial independence the log-likelihood is

completely separated in terms of (µi,1, σ
2
i1

) and (µi,2, σ
2
i,2), so maximum-likelihood estimators

are derived for each sub-sample the usual way. Evaluating the difference of the log-likelihood

under full-sample and partial-sample estimators gives after some simplifications the test

statistic for a fixed j:

Aj(Xi; µ̂i,0, µ̂i,1, µ̂i,2, σ̂
2
i,0, σ̂

2
i,1, σ̂

2
i,2) = n log(σ̂2

i,0)− j log(σ̂2
i,1)− (n− j) log(σ̂2

i,2) (3.8)

The limiting process of {Aj} is of the form of equation (3.3) and has k = 2 degrees of

freedom. It can be easily checked, that Assumption 1 holds in this case. Conditional on the
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test decision, the data are standardized by:

Ẑi,t =
Xi,t − µ̂i,11t≤l̂1 − µ̂i,21t>l̂1√

σ̂2
i,11t≤l̂1 + σ̂2

i,21t>l̂1

if a break is detected or Ẑt =
Xi,t − µ̂i

σ̂i
else (3.9)

For the piecewise standardized data, full-sample and partial-sample ML-estimators follow

from the simplified log-likelihood, now given by

L(Ẑ;P0) =− n

2
log |P0| −

1

2

n∑
t=1

Ẑ
′

tP
−1
0 Ẑt

L(Ẑ;P1, P2) =− j

2
log |P1| −

1

2

j∑
t=1

Ẑ
′

tP
−1
1 Ẑt −

n− j
2

log |P2| −
1

2

n∑
t=j+1

Ẑ
′

tP
−1
2 Ẑt

yielding

P̂0 =
1

n

n∑
t=1

(
Ẑ1,tẐ2,t · · ·
· · · Ẑm−1,tẐm,t

)
, and

P̂1 =
1

j

j∑
t=1

(
Ẑ1,tẐ2,t · · ·
· · · Ẑm−1,tẐm,t

)
, P̂2 =

1

n− j

n∑
t=j+1

(
Ẑ1,tẐ2,t · · ·
· · · Ẑm−1,tẐm,t

)

where it was used that
∑j
t=1 Ẑ

2
i,t = 1 and

∑n
t=j+1 Ẑ

2
i,t = 1 for every dimension i by construc-

tion of Ẑ. Given j, the likelihood-ratio test statistic for centered and standardized Gaussian

data is obtained as

Aj = n · log(|P̂0|)− j · log(|P̂1|)− (n− j) · log(|P̂2|) (3.10)

Had one based the test statistic on the unobserved Zt, the critical value associated with the

sup-functional sup
π·n≤j≤π·n

Aj would be given by sup
π∈Π
B(m−1)m/2(π).

Remark 1. For the two-dimensional case we illustrate why Assumption 2.3 is a plausible

assumption. Without loss of generality, assume that t < πn. Note that dropping this

assumption would lead to gradients and information matrices with block structure. The

results remain unchanged, expressions become substantially more cumbersome and do not

add much to the argument. For details, see Demetrescu and Wied [2018+].

The log-likelihood contribution of observation t can be written as

lt(ρ, θ̂) =
1

2

1

1− ρ2

(
(X1,t − µ1)2

σ2
1

− 2ρ
(X1,t − µ1)(X2,t − µ2)

σ1σ2
+

(X2,t − µ2)2

σ2
2

)

We will consider the case of a break in dimension i = 1 at l̂ = π̂1n with 1 < l̂1 < n

and constant parameters for i = 2, so θ = (µ1,1, µ1,2, σ
2
1,1, σ

2
1,2, µ2, σ

2
2). In order to verify

11



Assumption 2.3, write

∂

∂θ
lt(ρ, θ) =

1

1− ρ2



1t≤l̂1

(
ρ
X2,t−µ2

σ1,1σ2
− X1,t−µ1,1

σ2
1,1

)
1t>l̂1

(
ρ
X2,t−µ2

σ1,2σ2
− X1,t−µ1,2

σ2
1,2

)
1t≤l̂1

(
ρ

(X1,t−µ1,1)(X2,t−µ2)

σ3
1,1σ2

− (X1,t−µ1,1)2

σ4
1,1

)
1t>l̂1

(
ρ

(X1,t−µ1,2)(X2,t−µ2)

σ3
1,2σ2

− (X1,t−µ1,2)2

σ4
1,2

)
1t≤l̂1

(
ρ
X1,t−µ1,1

σ1,1σ2
− X2,t−µ2

σ2
2

)
+ 1t>l̂1

(
ρ
X1,t−µ1,2

σ1,2σ2
− X2,t−µ2

σ2
2

)
1t≤l̂1

(
ρ

(X1,t−µ1,1)(X2,t−µ2)

σ1,1σ3
2

− (X2,t−µ2)2

σ4
2

)
+

1t>l̂1

(
ρ

(X1,t−µ1,2)(X2,t−µ2)

σ1,2σ3
2

− (X2,t−µ2)2

σ4
2

)


:=

1

1− ρ2
Gρ

The first gradient of lt(·) w.r.t. µ1,1 and σ2
1,1 is zero for t > l̂1 and vice versa. This is not the

case for µ2 and σ2
2 , which affect all likelihood-contributions but to varying degree, depending

on the sub-sample. To make this explicit, the difference in gradients of the log-likelihoods

with respect to ρ can be written as

n∑
t=1

∂

∂θ

(
lt(ρ̃, θ)− lt(ρ̂, θ)

)
=

l̂1∑
t=1

( 1

1− ρ̃2
Gρ̃ −

1

1− ρ̂2
Gρ̂

)
+

n∑
t=l̂1+1

( 1

1− ρ̃2
Gρ̃ −

1

1− ρ̂2
Gρ̂

)

=

l̂1∑
t=1

1

1− ρ̂2

(
Gρ̂ −Gρ̃

)
+Gρ̃

( 1

1− ρ̂2
− 1

1− ρ̃2

)
+

n∑
t=l̂1+1

1

1− ρ̂2

(
Gρ̂ −Gρ̃

)
+Gρ̃

( 1

1− ρ̂2
− 1

1− ρ̃2

)

Since both ρ̂ and ρ̃ are consistent estimators and lim
n→∞

Gρ̃ = lim
n→∞

Gρ̂ for both sub-samples,

the likelihood functions also converge to the same limit, i.e. their differences converge to

zero. This is a necessary condition for the fact that

1√
n

n∑
t=1

∂

∂θ

(
lt(ρ̃, θ)− lt(ρ̂, θ)

)
converges to a limit process in D[0, 1]. Since this limit process is non-standard, appropriately

correcting Aj(δ̃, δ̂, θ̂) for the residual effect is difficult. This feature gives rise to the bootstrap

schemes laid out previously.

3.2 Gaussian Copula

Alternatively step 2 can also be based on the copula associated with the Gaussian dis-

tribution assumption. Step 1 remains unchanged, however the data are now (piecewise)

transformed onto the copula scale by

Ûi,t = F (Xi, µ̂i,1, σ̂i,1) for i = 1, ..., l̂i

Ûi,t = F (Xi, µ̂i,2, σ̂i,2) for i = l̂i + 1, ..., n if the test rejects

Ûi,t = F (Xi, µ̂i,0, σ̂i,0) for i = 1, ..., n if not

(3.11)
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The pseudo-observations are then used to estimate the dependency parameter (i.e. the cor-

relation matrix) of the Gaussian copula under the null and alternative hypothesis. Consider

next the density of the Gaussian copula

f(Ût;P ) = |R|− 1
2 exp

(
− 1

2
Û

′

t (R
−1 − I)Ût

)

from where the full-sample log-likelihood

L(Û ;P0) = −n
2
|R| − 1

2

n∑
t=1

Û
′

t (R
−1
0 − I)Ût

and the partial-sample log-likelihood

L(Û ;P1, P2) = − j
2
|R1| −

n− j
2
|R2| −

1

2

j∑
t=1

Û
′

t (R
−1
1 − I)Ût −

1

2

n∑
t=j+1

Û
′

t (R
−1
2 − I)Ût

are obtained. Let R̂0, R̂1 and R̂2 denote the ML-estimators for the correlation matrix of the

full sample and each sub-sample. Evaluating the log-likelihood at the respective parameter

estimates gives the test statistic for a fixed j as

Aj = 2
(
L(Û ; R̂1, R̂2)− L(Û ; R̂0)

)
. (3.12)

Had one based the test statistic on the unobserved Zt, the critical value associated with the

sup-functional sup
π·n≤j≤π·n

Aj would be given by sup
π∈Π
B(m−1)m/2(π).

3.3 Bivariate t-Distribution

In many financial applications with moderate observation frequencies (e.g. monthly or

weekly), the heavy-tailed t-distribution yields a better fit than the Gaussian distribution,

see Cont [2001] who collects empirical facts on asset returns. Therefore we now turn to the

problem of testing parameter stability under the assumption to observe data from

(X1,t, X2,t)
i.i.d.∼ t(µ1,1, µ2,1, ξ11,1, ξ22,1, ρ1, ν) for t = 1, ..., l1

(X1,t, X2,t)
i.i.d.∼ t(µ1,2, µ2,1, ξ11,2, ξ22,2, ρ1, ν) for t = l1 + 1, ..., l2

(X1,t, X2,t)
i.i.d.∼ t(µ1,2, µ2,2, ξ11,2, ξ22,2, ρ1, ν) for t = l2 + 1, ..., lD

(X1,t, X2,t)
i.i.d.∼ t(µ1,2, µ2,1, ξ11,2, ξ22,2, ρ2, ν) for t = lD, ..., n

where ν denotes the degrees of freedom and Ξ denotes the dispersion matrix, such that the

covariance matrix follows as Σ = ν
ν−2Ξ. Similar to the Gaussian case, we impose that ν and

ξ are bounded away from zero. The correlation coefficient satisfies

ρ12 =
ν
ν−2ξ12√

ν
ν−2ξ11 ·

√
ν
ν−2ξ22

=
ξ12√
ξ11

√
ξ22

and the t-distribution is equivalently parametrized - similar to the covariance decomposition

13



in the Gaussian case - in terms of the cross-dispersion and the correlation:

Ξ =

(
ξ11

√
ξ11

√
ξ22ρ√

ξ11

√
ξ22ρ ξ22

)
=

(
ξ11 ξ12

ξ12 ξ22

)

By the properties of the multivariate t-distribution, each marginal distribution i satisfies

Xi,t
i.i.d.∼ t(µi,1, ξi,1, ν) for t = 1, ..., li

Xi,t
i.i.d.∼ t(µi,2, ξi,2, ν) for t = li + 1, ..., n

and can test 1 by setting θi = (µi, ξi). From the distributional assumption, the probability

density is given by

f(Xt;µ,Ξ, ν) =
Γ(ν+m

2 )

Γ(ν2 )(πν)m/2|Ξ|0.5
(

1 +
1

ν
(Xt − µ)′Ξ−1(Xt − µ)

)(− ν+m2 )

from where the marginal density of dimension i follows as

f(Xi,t;µi, ξi, ν) =
Γ(ν+1

2 )

Γ(ν2 )
√
πνξ2

i

(
1 +

(Xi,t − µi)2

νξ2
i

)(− ν+1
2 )

Although degrees of freedom are assumed to be constant in, they nevertheless have to be

estimated in finite samples. This is done before testing marginal distributions by maximizing

the log-likelihood associated with the joint distribution. No closed-form solution exists for

maximizing the log-likelihood, so one has to use numerical methods to find the ML-estimator

for µ, Ξ and ν. We refer to Liu and Rubin [1995] for a detailed description of the EMCE-

algorithm typically used in this context. Let ν̄ denote the ML-estimator of the degrees

of freedom for the multivariate distribution, which is now fixed when testing Hypothesis

Pair 1 for each margin. Using the same separation of the log-likelihood in terms of (µ1, ξ1)

and (µ2, ξ2) as in the Gaussian case, the EMCE-algorithm delivers the corresponding ML-

estimator. Full-sample estimators (µ̂0, ξ̂0) are obtained accordingly, which are plugged back

into the LR-statistic together with (µ̂1, µ̂2, ξ̂1, ξ̂2). After omitting constants one obtains for

a fixed j

Ai,j = 2
(
(Xi; µ̂i,1, µ̂i,2, ξ̂i,1, ξ̂i,2, ν)− L(Xi; µ̂i,0, ξ̂i,0, ν)

)
= n · log(ξ̂2

i,0)− j · log(ξ̂2
i,1)− (n− j) · log(ξ̂2

i,2)

− (ν + 1)

j∑
t=1

log
(

1 +
1

ν

(Xi,t − µ̂i,1
ξ̂i,1

)2)− (ν + 1)

n∑
t=j+1

log
(

1 +
1

ν

(Xi,t − µ̂i,2
ξ̂i,2

)2)
+ (ν + 1)

n∑
t=1

log
(

1 +
1

ν

(Xi,t − µ̂i,0
ξ̂i,0

)2)
(3.13)

and Hypothesis Pair 1 is tested using

sup
π·n≤j≤π·n

Aj →d sup
Π
B2(π)

Testing constant dependency is specified by recognizing that δD = ρ12 under the assumption
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of constant degrees of freedom. Since the multivariate t-distribution is a location-scale family

in (µ, ξ), a standardization similar to the Gaussian case

Ẑi,t =
Xi,t − µ̂i,11t≤l̂1 − µ̂i,21t>l̂1√

ξ̂i,11t≤l̂1 + ξ̂i,21t>l̂1

if a break is detected or Ẑt =
Xi,t − µ̂i√

ξ̂i

else (3.14)

leaves us with

Ẑt
i.i.d.∼ t(0, 0, 1, 1, ρ, ν̄)

since for standardized data ρ = ξ12. The log-likelihood simplifies considerably, so a simple

line search on the first-order condition now suffices to obtain full-sample and partial-sample

estimators ξ̂12. The LR-statistic for a constant j is given by

Aj(Ẑ, ρ̂0, ρ̂1, ρ̂2) = n log(1− ρ̂2
0)− j log(1− ρ̂2

1)− (n− j) log(1− ρ̂2
1)

+ (ν + 2)

n∑
t=1

log
(

1 +
1

ν

Ẑ2
1,t − 2ρ̂0Ẑ1,tẐ2,t + Ẑ2

2,t

1− ρ̂2
0

)
− (ν + 2)

j∑
t=1

log
(

1 +
1

ν

Ẑ2
1,t − 2ρ̂1Ẑ1,tẐ2,t + Ẑ2

2,t

1− ρ̂2
1

)
− (ν + 2)

n∑
t=j+1

log
(

1 +
1

ν

Ẑ2
1,t − 2ρ̂2Ẑ1,tẐ2,t + Ẑ2

2,t

1− ρ̂2
2

)
(3.15)

and the test statistic against a single break follows as

sup
π·n≤j≤π·n

Aj

Again, sup
Π
B1(π) would emerge as the asymptotic distribution, if (3.15) would be based

directly on observed data. Extensions to the multivariate case are obtained analogously to

the Gaussian case. Because of the high computational effort, the lack of additional insight

and the more flexible way to handle t-distributed random variables presented in the next

section, this is not pursued further.

3.4 t-Copula

Instead, we use a consequent extension to model marginal and joint distribution in separate

steps using the concept of copulae and allows to relax the assumption of constant degrees

of freedom. More specifically it assumed that the observations are sampled from univariate

t-distributions, while the underlying DGP is a t-copula, see Demarta and McNeil [2005].

Maintaining the (piecewise) i.i.d. assumption we now have

(X1,t, X2,t)
i.i.d.∼ t(µ1,1, ξ1,1, ..., µm,1, ξm,1, P1, ~ν) for t = 1, ..., l1

(X1,t, X2,t)
i.i.d.∼ t(µ1,2, ξ1,2, ..., µm,1, ξm,1, P1, ~ν) for t = l1 + 1, ..., l2

· · · · · ·

(X1,t, X2,t)
i.i.d.∼ t(µ1,2, ξ1,2, ..., µm,2, ξm,2, P1, ~ν) for t = lm + 1, ..., lD

(X1,t, X2,t)
i.i.d.∼ t(µ1,2, ξ1,2, ..., µm,2, ξm,2, P2, ~ν) for t = lD, ..., n
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where ~ν = (ν1, ..., νm, νD) is an m+1-vector of the degrees of freedom, which are assumed to

be constant over time but now are free to vary in the cross-section. By separating the degrees-

of-freedom of marginal and joint distribution we implicitly introduce a two-stage model with

t-distributed marginals and a t-copula. The correlation matrix P directly parametrizes the

t-copula and can no longer be obtained from the covariance matrix. Step 1 of the Sequential

Procedure now requires separate ML-estimation at the margins instead of estimating ν over

the joint distribution and keeping it constant for every margin. ν is not necessarily fixed,

but can be part of the ML-estimation in each sub-sample (again using an ECME-algorithm).

Testing constant marginal distributions is almost unchanged, (3.15) is now computed using

the full-sample ML-estimator ν̂i for each margin rather than ν. Conceptually identical to the

Gaussian copula case, the observed data are now transformed by the cumulative distribution

function of the t-distribution, denoted F (Xi,t, θi,t) evaluated at the ML-estimator θ̂i:

Ûi,t = F (Xi, µ̂i,1, σ̂i,1, ν̂i) for i = 1, ..., l̂i

Ûi,t = F (Xi, µ̂i,2, σ̂i,2, ν̂i) for i = l̂i + 1, ..., n if the test rejects

Ûi,t = F (Xi, µ̂i,0, σ̂i,0, ν̂i) for i = 1, ..., n̂ if not

(3.16)

The test for a constant t-copula is now based on Û . From the probability density of the

t-copula

c(Ût;P, ν) =
Γ(ν+m

2 )
(
Γ(ν2 )

)m−1(
Γ(ν+1

2 )
)m|P |0.5

(
m∏
i=1

(
1 +

Ŷ 2
i,t

ν

) ν+1
2

)(
1 +

1

ν
Ŷ

′

t P
−1Ŷt

)

with Ŷi,t = F−1(Ûi,t, ν) denoting the quantile function of a standardized t-distribution and

lΓ the log−Γ-function, the log-likelihood follows as

L(Û ;P0, ν) =n ·
(
lΓ(

ν +m

2
) + (m− 1)lΓ(

ν

2
)−m · lΓ(

ν + 1

2
)− 0.5 log |P0|

)
+

j∑
t=1

(
ν + 1

2

m∑
i=1

log

(
1 +

Ŷ 2
i,t

ν

)
− ν +m

2
log

(
1 +

Ŷ
′

t P
−1
0 Ŷt
ν0

)) (3.17)

for the full-sample and

L(Û ;P1, P2, ν) =j ·
(
lΓ(

ν +m

2
) + (m− 1)lΓ(

ν

2
)−m · lΓ(

ν + 1

2
)− 0.5 log |P1|

)
+

j∑
t=1

(
ν0 + 1

2

m∑
i=1

log

(
1 +

Ŷ 2
i,t

ν0

)
− ν1 +m

2
log

(
1 +

Ŷ
′

t P
−1
1 Ŷt
ν0

))

(n− j) ·
(
lΓ(

ν +m

2
) + (m− 1)lΓ(

ν

2
)−m · lΓ(

ν + 1

2
)− 0.5 log |P2|

)
+

n∑
t=j+1

(
ν + 1

2

m∑
i=1

log

(
1 +

Ŷ 2
i,t

ν

)
− ν +m

2
log

(
1 +

Ŷ
′

t P
−1
2 Ŷt
ν

))
(3.18)

for the partial samples. Similar to the multivariate t-distribution, ML-estimation of (3.17)

and (3.18) requires numerical methods, such as EM-algorithms. Let (P̂0, ν̂) and (P̂1, P̂2)
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denote the full-sample and partial-sample ML-estimator, we have for a fixed j:

Aj = 2

(
L(Û ; P̂1, P̂2, ν̂)− L(Û ; P̂0, ν̂)

)
(3.19)

The corresponding sup-LR test statistic would follow sup
π∈Π
B(m−1)m/2(π) under the null hy-

pothesis, if the residual effect could be ignored. Full ML-estimation of the t-copula is

extremely time-consuming, particularly in higher dimensions, Demarta and McNeil [2005]

therefore suggest a semi-parametric pseudo-ML procedure sharing the asymptotic properties

of full ML-estimation. In a first step, the empirical Kendall’s tau matrix P̂ τ of the data

transformed as in (3.17) is calculated as

P̂ τ =


ρ̂τ (Ẑ1, Ẑ1) · · · ρ̂τ (Ẑ1, Ẑn)

...
. . .

...

ρ̂τ (Ẑn, Ẑ1) · · · ρ̂τ (Ẑn, Ẑn)


where each element is given as the empirical pairwise Kendall’s tau coefficient.

ρ̂τ (Ẑn, Ẑn) =

(
n

2

)−1 ∑
1≤t1<t2≤n

sign
(
(Ẑt1,i − Ẑt2,i)(Ẑt1,j − Ẑt2,j)

)
The empirical Kendall’s tau matrix serves to construct a method-of-moments estimator for

P by P ∗ = sin(π2 P̂
τ ) and subsequently estimate νC , holding P ∗ fixed. As in the case of

the multivariate t-distribution, a one-dimensional line search is required to compute ν̂C .

Following Mashal and Zeevi [2002] one can perform a simple bisection algorithm over the

first-order condition of the log-likelihood with respect to νC . As pointed out by Mashal and

Zeevi [2002] using Pseudo-ML-estimators affects the limit distribution. This is unproblem-

atic in our case, because a bootstrap scheme, that could also be used to approximate the

appropriate limit distribution in small samples, is already at hand.

Similar to the multivariate t-distribution with constant degrees of freedom we also consider

the effects of misspecification of the t-copula. More precisely, we assume that the marginal

distributions are correctly specified and tested but that the underlying copula is mistakenly

assumed to be Gaussian, which (as a by-product) reduces the computational effort in higher

dimensions. One could of course also discuss effects of misspecification at the margins. As

this section is concerned with the performance of non-parametric and parametric copula

tests, the issue is omitted here.

4 Power and Size Results

Finite sample properties of the parametric and nonparametric tests with the asymptotic

and bootstrapped critical values are examined in a Monte Carlo study with 1000 repetitions

for each parameter constellation. Every parametric model is covered in one subsection, the

setup of the Monte Carlo study is identical for each model: at first empirical rejection rates

under H0 are reported, i.e. the correlation coefficient is kept constant while there are changes

in marginal parameters (scenario 1). The extent to which marginal parameters change is

controlled by a tuning parameter s, such that µ and σ2 change simultaneously. In a second
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study we compute empirical power under changing marginal parameters (scenario 2). The

change points are chosen to be distinct for each margin and the joint distribution.

The nominal significance level α is set to 5 %, the corresponding are either taken from

Kiefer [1959] for the fluctuation tests and Andrews [1993] for the sup-LR test or simulated

using 1000 Monte Carlo repetitions on a discrete grid with 10.000 elements. Additionally

the Monte Carlo average of each break point estimator and their respective Monte Carlo

standard deviations are shown for scenario 2.

4.1 Gaussian Distribution

For the first simulation study we generate data from a m-dimensional Gaussian distribution

with distinct change-points in marginal parameters and correlation. The sample sizes are

set to 100, which seems reasonable for quarterly data, 500 which should be reached either in

long time series or monthly data and 1500 to approximate asymptotic behaviour. Depending

on the sample size the following timing of the regime shifts is chosen, mimicking a situation

of financial contagion:

n l1 l2 lD

100 50 60 70

500 250 300 350

1500 750 900 1050

Using vector notation and the covariance decomposition of the multivariate Gaussian dis-

tribution Σ = S′PS, data is generated according to

Xt
i.i.d.∼ N

(0.05

0.05

0.05

 ,

1 0 0

0 1 0

0 0 1

 ,

 1 0.4 0.4

0.4 1 0.4

0.4 0.4 1

) for t = 1, ..., l1

Xt
i.i.d.∼ N

(0.06− 0.01s

0.05

0.05

 ,

s 0 0

0 1 0

0 0 1

 ,

 1 0.4 0.4

0.4 1 0.4

0.4 0.4 1

) for t = l1, ..., l2

Xt
i.i.d.∼ N

(0.06− 0.01s

0.06− 0.01s

0.06− 0.01s

 ,

s 0 0

0 s 0

0 0 s

 ,

 1 0.4 0.4

0.4 1 0.4

0.4 0.4 1

) for t = l2, ..., lD

Xt
i.i.d.∼ N

(0.06− 0.01s

0.06− 0.01s

0.06− 0.01s

 ,

s 0 0

0 s 0

0 0 s

 ,

 1 ρ2 ρ2

ρ2 1 ρ2

ρ2 ρ2 1

) for t = lD, ..., n

This is simplified to the bivariate and extended to the five-dimensional case accordingly.

For scenario 1 the correlation is kept constant by setting ρ2 = 0.4. In order to focus on

the important aspects, the magnitude of parameter changes in each marginal distribution is

identical and ranges over s ∈ [0.2, 0.25, 0.5, 1, 2, 5]. The case of s = 1 corresponds to testing

Hypothesis Pair 2 while all other cases s1 = s2 6= 1 test Hypothesis Pair 3 where H0 is

true. Results are shown in figure 4.1: the test for constant marginal distributions has higher

power for X1 than for X2. This is consistent with both theory and previous studies, as we

set λ1 = 0.5 and λ2 = 0.6.
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Figure 4.1: Gaussian Distribution, Scenario 1: Rejection Rates under H0

s n = 100 n = 500 n = 1500
Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test

Margins X1 X2 X1 X2 X1 X2 X1 X2 X1 X2 X1 X2

0.2 0.957 0.869 0.994 0.993 1 1 1 1 1 1 1 1
1/3 0.711 0.561 0.834 0.786 1 1 1 1 1 1 1 1
0.5 0.312 0.229 0.384 0.344 0.997 0.991 0.994 0.994 1 1 1 1
0.75 0.069 0.051 0.093 0.073 0.369 0.319 0.373 0.330 0.910 0.869 0.882 0.857

1 0.019 0.025 0.043 0.037 0.036 0.041 0.044 0.049 0.049 0.050 0.049 0.056
4/3 0.058 0.061 0.077 0.074 0.407 0.376 0.343 0.343 0.899 0.892 0.876 0.857
2 0.309 0.325 0.362 0.378 0.996 0.992 0.992 0.990 1 1 1 1
3 0.706 0.729 0.828 0.824 1 1 1 1 1 1 1 1
5 0.943 0.960 0.993 0.991 1 1 1 1 1 1 1 1

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 2 asym. boot. asym. boot. asym. boot. asym. boot. asym. boot. asym. boot.

0.2 0.021 0.048 0.076 0.041 0.018 0.047 0.066 0.060 0.024 0.054 0.071 0.065
1/3 0.034 0.060 0.103 0.056 0.013 0.051 0.065 0.059 0.022 0.051 0.071 0.062
0.5 0.043 0.082 0.012 0.068 0.013 0.046 0.067 0.068 0.019 0.052 0.071 0.065
0.75 0.043 0.069 0.084 0.047 0.028 0.041 0.103 0.095 0.019 0.048 0.107 0.091

1 0.039 0.062 0.066 0.038 0.030 0.039 0.064 0.058 0.040 0.050 0.068 0.064
4/3 0.042 0.065 0.076 0.048 0.033 0.050 0.115 0.095 0.015 0.047 0.102 0.086
2 0.042 0.075 0.115 0.048 0.013 0.044 0.068 0.060 0.021 0.055 0.072 0.063
3 0.034 0.051 0.110 0.068 0.016 0.050 0.063 0.058 0.024 0.053 0.068 0.060
5 0.030 0.045 0.082 0.042 0.022 0.054 0.060 0.059 0.024 0.053 0.067 0.058

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 3 asym. boot. asym. boot. asym. boot. asym. boot. asym. boot. asym. boot.

0.2 0.029 0.048 0.124 0.051 0.026 0.056 0.073 0.061 0.024 0.046 0.063 0.048
1/3 0.036 0.055 0.169 0.078 0.021 0.055 0.074 0.062 0.021 0.049 0.066 0.051
0.5 0.041 0.067 0.162 0.067 0.016 0.046 0.082 0.067 0.019 0.055 0.061 0.051
0.75 0.024 0.050 0.116 0.057 0.033 0.047 0.131 0.103 0.022 0.045 0.122 0.096

1 0.031 0.050 0.120 0.057 0.044 0.048 0.070 0.057 0.045 0.052 0.062 0.049
4/3 0.041 0.068 0.137 0.057 0.032 0.051 0.127 0.102 0.019 0.039 0.117 0.093
2 0.039 0.064 0.179 0.083 0.019 0.047 0.078 0.063 0.023 0.047 0.069 0.055
3 0.023 0.042 0.164 0.077 0.021 0.057 0.071 0.049 0.024 0.050 0.065 0.047
5 0.026 0.033 0.121 0.045 0.022 0.053 0.072 0.052 0.026 0.053 0.065 0.053

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 5 asym. boot. asym. boot. asym. boot. asym. boot. asym. boot. asym. boot.

0.2 0.021 0.023 0.183 0.020 0.039 0.050 0.097 0.044 0.039 0.044 0.085 0.049
1/3 0.025 0.027 0.263 0.032 0.031 0.042 0.094 0.051 0.041 0.048 0.084 0.050
0.5 0.038 0.046 0.278 0.030 0.031 0.045 0.102 0.049 0.037 0.045 0.084 0.052
0.75 0.037 0.052 0.215 0.014 0.046 0.049 0.197 0.116 0.037 0.042 0.150 0.097

1 0.034 0.046 0.184 0.015 0.061 0.055 0.095 0.053 0.064 0.041 0.086 0.049
4/3 0.046 0.057 0.200 0.022 0.055 0.049 0.210 0.113 0.039 0.053 0.148 0.102
2 0.045 0.047 0.275 0.043 0.036 0.047 0.108 0.058 0.039 0.049 0.089 0.047
3 0.032 0.023 0.251 0.030 0.035 0.055 0.094 0.047 0.042 0.051 0.088 0.047
5 0.029 0.011 0.182 0.022 0.039 0.065 0.092 0.048 0.038 0.053 0.092 0.050

The simulations reveal presence of the residual effect for every sample size, which appears as

soon as s 6= 1. In this case the bootstrap corrections increase power of the fluctuation test

by 5 to 10 %, given a specific ρ2 6= 0.4, while the sup-LR test is corrected for the increased

rejection rates under H0. As n increases, we observe correctly sized test decisions at each

margin in both test frameworks. To obtain results on empirical power, the correlation of

the first regime is set to ρ1 = 0.4 and ρ2 varies symmetrically around ρ1 from −0.1 to

0.9 in steps of 0.1. The dashed lines in figure 4.2 - 4.4 represent empirical power, if the

incorrect asymptotic critical values are used, in this way one can quantify the residual effect

on empirical power.

19



Figure 4.2: Gaussian Distribution, n=100, Scenario 2: Empirical Power
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Figure 4.3: Gaussian Distribution, n=500, Scenario 2: Empirical Power
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Figure 4.4: Gaussian Distribution, n=1500, Scenario 2: Empirical Power
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If one compares the bootstrap-corrected versions indicated by solid lines, the results for

testing constant correlation are inconclusive, at least in the bivariate case. Although the sup-

LR test for constant marginal distributions outperforms the fluctuation test in small samples

(see the upper panel of figure 4.1), this result does not carry over to the second step of the

procedure. At larger samples, the picture is clearer: both procedures deliver similar results

for testing at the marginal distributions and the parametric framework delivers significantly

higher power when testing constant correlation. For example at ρ2 = 0.6 the 95 %-confidence

intervals are [0.681, 0.728] for the sup-LR test and [0.429, 0.491] for the fluctuation test at

n = 500 and [0.984, 0.996] for the sup-LR test and [0.892, 0.928] for the fluctuation test at

n = 1500.

Next we consider dimensionality effects for different sample sizes. As can be seen from the

lower two panels of figure 4.1, the residual effect slowly declines with dimension m in the

fluctuation test framework and even increases with m in the sup-LR-test framework, hence

empirical power in figure 4.5 - 4.7 is compared only using the respective bootstrap schemes.
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Figure 4.5: Multivariate Gaussian Distribution, n=100, Scenario 2: Empirical Power
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Figure 4.6: Multivariate Gaussian Distribution, n=500, Scenario 2: Empirical Power
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Figure 4.7: Multivariate Gaussian Distribution, n=1500, Scenario 2: Empirical Power
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While both tests keep their size in case of no change in the dependency (ρ2 = 0.4), the

performance of the sup-LR test increases with the dimension m: in the 5-dimensional case,

even moderate changes such as from ρ1 = 0.4 to ρ2 = 0.6 are detected almost every time,

while the rejection rate is around 65 % in the bivariate case. The dimensionality effect is

largely absent in the fluctuation test framework, where in the case of increasing correlation

empirical power even declines with the dimension m.

Finally, in figure 4.8, we consider Monte Carlo bias and root mean-squared error of the break

point estimator:
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Figure 4.8: Gaussian Distribution, Scenario 2: Break Point Estimation

ρ2 n = 100 n = 500 n = 1500
Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test

l1 bias(l1) rmse(l1) bias(l1) rmse(l1) bias(l1) rmse(l1) bias(l1) rmse(l1) bias(l1) rmse(l1) bias(l1) rmse(l1)
-0.1 6.85 14.11 2.36 16.27 11.17 22.28 4.81 25.50 11.54 25.68 3.70 21.64
0.1 6.78 13.96 2.27 16.41 11.14 21.97 4.23 25.58 11.42 25.54 3.83 21.07
0.3 6.75 14.16 2.35 16.57 10.92 21.50 4.17 25.35 11.51 25.88 3.82 21.08
0.5 6.87 14.18 2.48 16.72 11.00 21.70 4.22 25.44 11.34 25.09 3.91 20.90
0.7 6.80 14.14 2.37 16.78 10.92 21.47 4.00 26.08 11.46 25.30 4.07 20.61
0.9 6.76 14.25 2.59 16.90 11.00 21.69 4.39 26.99 11.67 25.56 4.04 20.42

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
l2 bias(l2) rmse(l2) bias(l2) rmse(l2) bias(l2) rmse(l2) bias(l2) rmse(l2) bias(l2) rmse(l2) bias(l2) rmse(l2)

-0.1 2.27 12.20 -1.65 17.38 3.56 19.28 1.84 28.47 5.65 21.59 4.21 24.44
0.1 2.22 12.20 -1.74 17.55 3.50 18.94 1.94 28.10 5.91 21.66 4.17 24.67
0.3 2.19 12.57 -1.53 17.52 3.84 18.52 1.85 29.18 5.90 21.51 3.86 24.29
0.5 2.11 12.43 -1.56 17.46 4.16 18.71 2.32 29.78 6.05 22.53 4.10 24.48
0.7 2.19 12.49 -1.41 17.58 3.93 18.48 2.39 29.02 6.08 21.38 4.20 24.04
0.9 2.36 12.34 -1.73 17.73 4.12 18.69 1.95 28.98 5.88 22.14 4.41 25.24

Fluctuation test sup-LR test Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 2 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -3.86 14.26 -5.38 16.87 -13.46 31.19 -0.21 26.15 -16.76 37.13 2.04 18.83
0.1 -7.79 20.31 -11.11 23.07 -24.82 56.18 -11.31 60.42 -47.26 102.04 -2.70 66.38
0.3 -9.56 22.86 -15.53 27.36 -77.65 131.78 -73.80 135.84 -184.36 323.67 -122.75 301.75
0.5 -9.67 20.97 -16.40 29.00 -87.23 138.21 -64.60 122.59 -180.64 329.68 -88.24 252.58
0.7 -6.90 15.22 -8.81 22.72 -33.83 68.04 -4.98 31.31 -45.16 106.13 -2.81 22.59
0.9 -4.72 10.69 0.81 5.21 -16.24 37.83 -0.23 4.02 -16.21 43.73 0.09 3.45

Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 3 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -2.55 9.78 -3.57 12.62 -10.31 19.48 0.92 9.65 -13.47 25.87 1.54 7.93
0.1 -5.27 16.69 -9.94 21.59 -22.96 45.92 -3.34 37.48 -32.87 65.28 3.13 24.49
0.3 -8.58 19.48 -16.41 27.98 -82.95 125.35 -71.20 132.78 -167.12 287.54 -87.16 256.22
0.5 -9.42 17.62 -17.55 29.68 -96.40 134.51 -57.88 118.46 -205.71 320.80 -68.59 212.62
0.7 -8.28 14.64 -7.89 22.36 -37.18 70.05 -0.41 11.78 -33.52 84.18 -4.36 9.92
0.9 -6.60 11.68 1.27 3.03 -12.02 31.38 0.71 1.87 -11.35 37.17 0.55 1.91

Fluctuation test sup-LR test Fluctuation test sup-LR test
m = 5 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -1.75 7.26 -0.83 6.45 -8.61 16.45 0.84 3.53 -9.89 18.76 1.01 3.31
0.1 -3.44 11.64 -6.38 17.47 -22.75 42.87 -1.27 18.98 -25.56 1.70 1.54 11.07
0.3 -7.27 15.40 -14.67 27.69 -76.89 110.93 -66.06 125.12 -191.27 290.56 -67.42 223.02
0.5 -10.88 16.68 -16.89 30.48 -103.63 128.80 -45.16 105.73 -265.41 344.97 -40.78 169.30
0.7 -11.89 16.60 -8.67 24.40 -64.10 90.31 0.52 7.07 -55.45 115.50 0.14 5.63
0.9 -12.65 16.93 1.46 2.70 -32.23 55.28 0.89 1.31 -12.60 36.70 0.88 1.16

Similar to the findings on empirical power, the fluctuation test outperforms the sup-LR test

in estimating break-point locations at each margin for small sample sizes (upper two panels

of figure 4.8), when it comes to the correlation change point, results however are switched:

except for n = 100 and small ρ2 both bias and variance are considerably smaller for the sup-

LR test. The fluctuation test underestimates ld even for a change from ρ1 = 0.4 to ρ2 = 0.9

and n = 1500 as compared to the sup-LR test, which has a negligible bias even for ρ2 = 0.7

(second panel). Results in the higher-dimensional case (the bottom two panels) also favor the

parametric framework: while using the sup-LR framework the regime shift is estimated very

accurately in the 5-dimensional case compared to the (also precise) estimates in the two and

three-dimensional set-up, break-point estimation is not considerably improved with m in the

fluctuation test framework. This is especially true for situations of shift contagion, namely

for increases in P . Since scenarios with potential shift contagion are usually associated with

increasing correlation, the preceding findings suggest to use the sup-LR test, in particular

when a precise estimation of the change-point is required.

Although there is some inconclusiveness for small samples we summarize from the simulation

results laid out in this section, that in moderate to large samples the sup-LR test with the

residual-bootstrap scheme has acceptable size properties under H0 and outperforms the

fluctuation test with a wild bootstrap scheme both in terms of detecting and estimating

24



regime-shifts.

4.2 Bivariate t-Distribution

Similar to the bivariate Gaussian distribution examined in section 4.1, scenario 1 and 2 are

adapted to a t-distribution with degrees of freedom fixed at ν = 5 over the entire sample:

(X1,t, X2,t)
i.i.d.∼ t5(0.05, 0.05, 1, 1, 0.4) for t = 1, ..., l1

(X1,t, X2,t)
i.i.d.∼ t5(0.06− 0.01s, 0.05, s1, 1, 0.4) for t = l1 + 1, ..., l2

(X1,t, X2,t)
i.i.d.∼ t5(0.06− 0.01s; 0.06− 0.01s, s, s, 0.4) for t = l2 + 1, ..., lD

(X1,t, X2,t)
i.i.d.∼ t5(0.06− 0.01s, 0.06− 0.01s, s, s, ρ2) for t = lD, ..., n

For the timing of the regime-shift, the same values as in the Gaussian case are used.
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Figure 4.9: t5-Distribution, Scenario 1: Rejection Rates under H0

s Fluctuation test sup-LR test, t, joint sup-LR test, Gaussian
n = 100 asym. boot. X1 asym. boot. X1 asym. boot. X1

0.2 0.017 0.056 0.604 0.490 0.015 0.949 0.237 0.075 0.978
1/3 0.025 0.053 0.321 0.703 0.035 0.670 0.258 0.092 0.819
0.5 0.022 0.052 0.118 0.812 0.039 0.305 0.299 0.094 0.500
0.75 0.019 0.037 0.031 0.736 0.018 0.100 0.272 0.073 0.233

1 0.018 0.034 0.018 0.708 0.011 0.075 0.244 0.071 0.178
4/3 0.030 0.060 0.032 0.737 0.008 0.110 0.239 0.074 0.275
2 0.053 0.087 0.129 0.821 0.028 0.328 0.273 0.079 0.542
3 0.054 0.090 0.347 0.680 0.031 0.719 0.259 0.079 0.841
5 0.050 0.074 0.623 0.508 0.017 0.966 0.244 0.075 0.985

Fluctuation test sup-LR test, t, joint sup-LR test, Gaussian
n = 500 asym. boot. X1 asym. boot. X1 asym. boot. X1

0.2 0.017 0.051 0.980 0.430 0.009 1 0.332 0.067 1
1/3 0.014 0.047 0.955 0.436 0.007 1 0.331 0.071 1
0.5 0.020 0.050 0.729 0.481 0.019 0.953 0.337 0.079 0.975
0.75 0.032 0.059 0.158 0.811 0.039 0.274 0.367 0.089 0.602

1 0.026 0.047 0.027 0.672 0.019 0.058 0.357 0.066 0.330
4/3 0.039 0.062 0.138 0.785 0.033 0.294 0.365 0.084 0.587
2 0.022 0.046 0.732 0.493 0.023 0.947 0.362 0.078 0.968
3 0.012 0.038 0.955 0.442 0.006 1 0.340 0.072 1
5 0.017 0.046 0.984 0.437 0.007 1 0.332 0.067 1

Fluctuation test sup-LR test, t, joint sup-LR test, Gaussian
n = 1500 asym. boot. X1 asym. boot. X1 asym. boot. X1

0.2 0.018 0.059 0.999 0.404 0.010 1 0.399 0.062 1
1/3 0.017 0.052 0.997 0.402 0.014 1 0.402 0.064 1
0.5 0.020 0.052 0.975 0.442 0.054 0.982 0.398 0.069 1
0.75 0.038 0.065 0.420 0.700 0.646 0.706 0.442 0.075 0.867

1 0.040 0.052 0.035 0.638 0.022 0.056 0.435 0.069 0.406
4/3 0.037 0.062 0.425 0.722 0.066 0.654 0.435 0.072 0.847
2 0.019 0.058 0.981 0.436 0.056 0.974 0.404 0.085 1
3 0.021 0.060 0.994 0.402 0.008 1 0.393 0.062 1
5 0.022 0.052 0.998 0.406 0.010 1 0.394 0.063 1

The fluctuation test behaves similar to the Gaussian case when testing for constant cross-

moments: the nominal level of 5 % is not reached under H0 when asymptotic critical values

are used. As before, the test shows good size properties under the wild bootstrap scheme.

Attention has to be paid in the correctly specified sup-LR test. Although it possesses good

power and size properties at the margins in step 1, using asymptotic critical values leads to

rejection rates up to 80 % under H0. Using the appropriate wild bootstrap scheme puts the

empirical rejection rates into acceptable regions, but now constantly falling short of 5 % and

decreasing towards zero if the margins vary strongly (see the bottom panel of figure 4.9).

Similar to using the correct distributional assumption, testing in the Gaussian framework

leads to severe size distortions of the sup-LR test using asymptotic critical values. The

test keeps its size under H0 if corrected by the wild bootstrap scheme and looks preferable

in terms of size to the (computationally more intensive) sup-LR test under the correct
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distributional specification.

Figure 4.10: t5-Distribution, n=100, Scenario 2: Empirical Power
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Figure 4.11: t5-Distribution, n=500, Scenario 2: Empirical Power
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Figure 4.12: t5-Distribution, n=1500, Scenario 2: Empirical Power
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Findings on power draw a picture similar to the Gaussian case: there is some inconclusiveness

in small samples, but figure 4.10 - 4.12 show the sup-LR test gaining power faster than the

fluctuation test, even though it is found to be conservative. We defer the discussion of

dimensionality effects in this parametric class to the next section on copulae and directly

move on to the accuracy of break-point estimators. Figure 4.13 again shows superiority of

the sup-LR tests over non-parametric methods in terms of bias and root mean-squared error

of the break-point estimator for lD and l1 in larger samples. We further conclude that the

more elaborate methods relying on the t-distribution should only be used, if the sample size

is sufficiently large.

Figure 4.13: t5-Distribution, Scenario 2: Break Point Estimation

ρ2 Fluctuation test sup-LR test sup-LR test, Gaussian Distribution
n = 100 bias(lD) rmse(lD) bias(l1) rmse(l1) bias(lD) rmse(lD) bias(l1) rmse(l1) bias(lD) rmse(lD) bias(l1) rmse(l1)

-0.1 -4.10 16.34 7.13 16.73 -8.90 20.79 1.76 18.70 -8.77 21.74 1.59 18.88
0.1 -8.11 21.75 7.21 16.81 -13.32 24.69 1.82 18.87 -12.76 25.99 1.87 18.85
0.3 -9.53 22.65 7.28 16.99 -16.53 27.37 2.21 18.77 -15.62 28.37 1.64 18.74
0.5 -8.85 20.78 7.39 16.93 -15.70 27.03 1.95 18.60 -16.82 29.10 1.47 18.85
0.7 -7.58 17.72 7.40 16.68 -11.79 23.62 1.79 18.57 -9.18 22.68 1.31 18.85
0.9 -5.82 14.17 7.57 16.40 -2.81 10.36 1.67 18.72 -0.55 9.08 1.52 18.76

Fluctuation test sup-LR test, t-Distribution sup-LR test, Gaussian Distribution
n = 500 bias(lD) rmse(lD) bias(l1) rmse(l1) bias(lD) rmse(lD) bias(l1) rmse(l1) bias(lD) rmse(lD) bias(l1) rmse(l1)

-0.1 -16.31 45.44 18.69 46.66 -1.93 41.62 4.74 41.11 -6.29 47.90 3.08 57.57
0.1 -36.85 87.20 17.60 45.19 -29.91 95.99 5.07 41.23 -32.02 92.43 3.45 57.78
0.3 -77.52 139.12 18.11 46.06 -85.34 154.96 5.01 41.40 -87.22 146.01 3.18 57.37
0.5 -78.12 130.81 19.05 46.58 -78.84 148.35 5.04 42.70 -73.01 132.82 2.89 57.44
0.7 -40.53 78.75 18.53 45.65 -3.93 42.24 5.25 42.78 -12.89 56.28 3.24 57.18
0.9 -23.50 49.67 18.56 46.33 0.18 4.72 5.06 42.47 0.77 8.88 3.69 56.37

Fluctuation test sup-LR test, t-Distribution sup-LR test, Gaussian Distribution
n = 1500 bias(lD) rmse(lD) bias(l1) rmse(l1) bias(lD) rmse(lD) bias(l1) rmse(l1) bias(lD) rmse(lD) bias(l1) rmse(l1)

-0.1 -32.67 77.77 27.20 67.95 -2.57 43.87 0.65 60.74 -1.62 54.17 9.01 67.65
0.1 -62.32 150.28 26.05 63.23 -13.95 110.93 2.04 50.37 -24.37 145.76 8.12 69.32
0.3 -222.37 382.55 26.11 62.42 -200.66 419.88 2.35 50.72 -193.88 382.50 5.80 68.18
0.5 -254.18 406.66 25.84 63.19 -187.67 403.02 1.93 50.54 -177.61 349.06 4.69 66.99
0.7 -76.73 170.33 27.72 63.86 -2.13 39.81 2.99 49.73 -7.04 59.83 4.16 66.12
0.9 -34.53 89.23 27.94 68.02 0.44 4.80 3.50 50.35 -0.12 6.22 4.31 65.85

Since sample sizes of 500 are hardly reached for monthly or quarterly data, we suggest using

the misspecified Gaussian sup-LR test in a shift contagion scenario and employ the respective

bootstrap method. As in the bivariate Gaussian case it could prove useful to additionally
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apply the fluctuation test, if a reduction in correlation is suspected. There also may be

situations with more than two dimensions and a sample size too small to obtain reliable

parameter estimates under the t-distribution specification, for example m = 3 and n = 200.

Such cases are not formally considered here and are left for future research, based on the

findings on the multivariate Gaussian one can suspect that - using an appropriate bootstrap

scheme - the sup-LR test is preferable here. Should the sample be large enough to permit

reliable estimation, the preceding findings favour the sup-LR test using the parametric

approach.

4.3 t-Copula With t-Marginal Distributions

The third simulation study compares non-parametric and parametric tests for a constant

copula. Specifically data are generated from a t4-copula and subsequently transformed using

the quantile function of a t8-distribution F−1
t (µ, ξ, ν = 8)

Ut
i.i.d.∼ Ct(R1, 4) for t = 1, ..., lD

Ut
i.i.d.∼ Ct(R2, 4) for t = lD, ..., n

X1,t = F−1
t (U1,t, 0.05, 1, 8) for t = 1, ..., l1

X1,t = F−1
t (U1,t, 0.06− 0.01s, s, 8) for t = l1, ..., n

X2,t = F−1
t (U2,t, 0.05, 1, 8) for t = 1, ..., l2

X2,t = F−1
t (U2,t, 0.06− 0.01s, s, 8) for t = l2, ..., n

with

P1 =

(
1 0.4

0.4 1

)
, P2 =

(
1 ρ2

ρ2 1

)

Generalizations to higher-dimensional cases are obtained by extending the correlation ma-

trix and subsequently transform data with the quantile function accordingly. We set l2 =

l3 = ... = lm = 300 and 1050, respectively. Under this DGP we compare the non-parametric

benchmark-test based on the empirical copula from Bücher et al. [2014], lined out in the

appendix, with the sup-LR test under correct specification (section 3.4) and under misspec-

ification as Gaussian copula (section 3.2).
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Figure 4.14: t-Copula, Scenario 1: Rejection Rates under H0

s n = 500 n = 1500
Fluctuation sup-LR Fluctuation sup-LR

margins X1 X2 X1 X2 X1 X2 X1 X2

0.2 0.999 0.999 1 1 1 1 1 1
1/3 0.999 0.995 0.999 0.999 1 1 1 1
0.5 0.917 0.859 0.920 0.896 1 1 1 1
0.75 0.242 0.192 0.208 0.179 0.670 0.598 0.517 0.485

1 0.043 0.039 0.048 0.031 0.049 0.038 0.017 0.010
4/3 0.240 0.233 0.209 0.219 0.650 0.641 0.513 0.484
2 0.906 0.920 0.918 0.910 1 1 1 1
3 0.999 0.999 1 0.999 1 1 1 1
5 1 1 1 1 1 1 1 1

m = 2 EC-test t-Cop Gauss Gauss EC-test t-Cop Gauss Gauss
lD boot boot
0.2 0.053 0.048 0.143 0.065 0.059 0.052 0.171 0.050
1/3 0.051 0.056 0.151 0.066 0.063 0.055 0.177 0.051
0.5 0.048 0.073 0.192 0.079 0.062 0.057 0.187 0.054
0.75 0.051 0.084 0.204 0.080 0.062 0.100 0.219 0.092

1 0.052 0.048 0.115 0.057 0.061 0.047 0.181 0.049
4/3 0.049 0.076 0.198 0.083 0.058 0.101 0.241 0.077
2 0.053 0.070 0.187 0.069 0.052 0.062 0.182 0.054
3 0.053 0.051 0.156 0.060 0.062 0.052 0.173 0.052
5 0.052 0.049 0.142 0.064 0.063 0.050 0.162 0.054

m = 3 EC-test t-Cop Gauss Gauss EC-test t-Cop Gauss Gauss
lD boot boot
0.2 0.054 0.043 0.234 0.055 0.060 0.036 0.213 0.052
1/3 0.054 0.044 0.251 0.048 0.055 0.043 0.250 0.048
0.5 0.048 0.062 0.295 0.057 0.056 0.046 0.270 0.048
0.75 0.052 0.073 0.301 0.068 0.055 0.096 0.320 0.094

1 0.051 0.042 0.265 0.045 0.053 0.029 0.265 0.043
4/3 0.052 0.059 0.302 0.068 0.056 0.102 0.352 0.090
2 0.058 0.060 0.286 0.065 0.060 0.046 0.265 0.048
3 0.055 0.043 0.242 0.053 0.051 0.044 0.249 0.049
5 0.054 0.038 0.220 0.051 0.060 0.042 0.230 0.056

m = 5 EC-test t-Cop Gauss Gauss EC-test t-Cop Gauss Gauss
lD boot boot
0.2 0.051 0.026 0.378 0.044 0.060 0.026 0.379 0.046
1/3 0.048 0.026 0.414 0.043 0.058 0.028 0.409 0.048
0.5 0.053 0.045 0.465 0.060 0.058 0.032 0.422 0.042
0.75 0.050 0.040 0.482 0.070 0.054 0.070 0.516 0.110

1 0.048 0.025 0.397 0.033 0.056 0.022 0.414 0.034
4/3 0.050 0.035 0.476 0.062 0.060 0.076 0.524 0.086
2 0.046 0.040 0.455 0.061 0.060 0.026 0.428 0.042
3 0.048 0.029 0.407 0.042 0.054 0.028 0.403 0.046
5 0.051 0.026 0.372 0.044 0.054 0.028 0.369 0.048

The empirical copula test keeps its size when testing for a constant copula, indicating that

piecewise standardization appropriately accounts changes in the margins and the i.i.d. mul-
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tiplier process can be applied. Except for the case of moderate changes at the margins,

where Hypothesis Pair 2 is rejected too frequently, this also holds for the correctly specified

sup-LR test. The result is in accordance with the Gaussian and t5-case. Unsurprisingly,

the misspecified sup-LR test does not keep its size given the nominal level of 5 %, this is

however appropriately corrected by the residual bootstrap. Using the scheme lined out in

section 3, empirical rejection rates are similar to the sup-LR test under correct specification.

Figure 4.15: t-Copula, n=500, Scenario 2: Empirical Power
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Figure 4.16: t-Copula, n=1500, Scenario 2: Empirical Power
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Figure 4.17: 3-variate t-Copula, n=500, Scenario 2: Empirical Power
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Figure 4.18: 3-variate t-Copula, n=1500, Scenario 2: Empirical Power
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Figure 4.19: 5-variate t-Copula, n=500, Scenario 2: Empirical Power
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Figure 4.20: 5-variate t-Copula, n=1500, Scenario 2: Empirical Power
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Results on empirical power in figure 4.15 - 4.20 suggest using the correctly specified sup-LR

test in larger samples, where the t-copula can be reliably estimated. What counts as a large

sample depends on the number of parameters to be estimated and thus on dimensionality:

in the bivariate case, n = 1500 is already sufficient for the parametric framework under

correct specification to outperform the non-parametric and misspecified test frameworks.

Some care has to be taken for the case n = 500, here the parametric test frameworks reject

H0 slightly too often (see second panel of figure 4.14).

In the three-dimensional case, where results tend to favor the empirical copula test for
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n = 500 and results start to shift for n = 1500. Moving to the five-dimensional case, neither

the correctly nor misspecified tests reach the power of the non-parametric framework and in

addition, testing under the Gaussian-copula assumptions yields higher power than testing

under the correct specification. Since the sup-LR test requires estimates of 10 correlation

parameters, νD in case of correct specification and (νi, µi, ξi) for every margin, a total 25 or

26 parameters, respectively, have to be estimated in the five-dimensional case and it comes

not at much surprise, that the test lacks power for n = 1500.

However, the sup-LR test yields considerably better results in estimating the change-point,

irrespective of whether the model is correctly specified or not, as can be seen in figure 4.21.

Even for n = 1500 and ρ2 = 0.9, lD is visibly biased in the fluctuation test framework, while

lD is already precisely estimated for ρ2 = 0.7. We also observe similar or even better results

of the misspecified sup-LR test compared to its correctly specified counterpart for samples,

that might be too small for efficiently estimating a higher-dimensional t-copula. Therefore

we suggest using the sup-LR test whenever precise estimation of the change-point is required.

Within the sup-LR framework usage of any advanced model is only advantageous if one has

high confidence on the model’s appropriateness and the sample size (relative to dimension)

permits reliable estimation. If the empirical researcher is merely interested in detecting

regime-shifts and the sample size is insufficiently small, better results can be achieved in

higher dimensions with the empirical copula test.

Figure 4.21: Multivariate t-Copula, n=500, Scenario 2: Copula-Break Point Estimation

n = 500 n = 1500
ρ2 EC-test sup-LR sup-LR, mis. EC-test sup-LR sup-LR, mis.

m = 2 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -16.64 36.37 -4.52 37.44 -5.32 40.42 -19.88 44.44 0.18 30.01 0.12 35.28
0.1 -33.00 65.76 -18.86 70.46 -21.62 77.34 -42.39 95.71 -5.51 82.97 -7.09 89.21
0.3 -79.44 115.54 -72.52 132.35 -76.53 133.93 -200.34 310.01 -148.00 332.92 -163.65 350.30
0.5 -85.97 119.52 -73.75 133.72 -75.54 135.24 -195.07 298.51 -125.00 302.52 -141.19 323.58
0.7 -34.18 60.76 -9.07 47.99 -8.48 48.72 -42.96 81.92 -2.20 31.67 -1.34 38.23
0.9 -13.04 23.80 0.01 5.68 1.10 5.54 -14.12 26.39 0.16 4.41 1.50 6.28

ρ2 EC-test sup-LR sup-LR, mis. EC-test sup-LR sup-LR, mis.
m = 3 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -11.26 22.25 -0.41 13.22 0.69 14.53 -12.69 26.37 1.28 9.69 2.21 12.44
0.1 -24.48 48.26 -8.53 47.23 -12.16 55.71 -21.83 50.78 1.57 44.64 0.63 44.13
0.3 -78.39 113.25 -76.20 131.47 -75.50 133.44 -145.39 250.86 -122.72 304.22 -136.03 319.16
0.5 -78.98 111.31 -73.45 130.87 -71.60 128.93 -145.28 248.97 -100.69 270.65 -103.99 278.64
0.7 -22.88 43.32 -1.41 28.15 -0.07 30.89 -24.19 54.54 0.09 17.34 2.12 22.80
0.9 -8.21 16.33 0.74 3.37 2.17 5.16 -7.62 15.11 0.74 2.60 1.93 4.38

ρ2 EC-test sup-LR sup-LR, mis. EC-test sup-LR sup-LR, mis.
m = 5 bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD) bias(lD) rmse(lD)
-0.1 -9.94 18.54 0.25 4.83 1.13 5.43 -10.78 20.05 0.47 4.11 1.42 4.98
0.1 -21.23 38.37 -4.89 27.32 -5.76 31.59 -20.24 40.48 0.62 13.32 1.49 17.62
0.3 -70.23 102.33 -60.10 117.79 -64.71 122.83 -111.41 199.28 -109.42 280.00 -119.52 294.02
0.5 -61.31 95.48 -65.59 124.34 -59.41 120.61 -97.78 187.68 -78.76 237.63 -50.87 212.54
0.7 -13.36 28.75 -0.40 19.43 1.70 19.37 -16.91 37.61 0.56 10.58 2.03 15.25
0.9 -4.76 9.77 0.75 2.45 2.23 3.55 -5.01 10.45 0.96 2.07 2.34 3.92

5 Application to Commodity and Equity Index Data

A first empirical application uses the methods subject to the simulation studies section 4.1

and section 4.2: Daily log-returns of real estate and equity indices are sequentially tested

for constancy of correlation once under the Gaussian (section 3.1) and once under the as-

sumption of a bivariate t-distribution (section 3.3). Both tests are benchmarked against the

non-parametric fluctuation test outlined in Appendix A. We test 3 for Crude Oil spot market
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returns 1 and the European equity sector, which we proxy by the EUROSTOXX502 over the

time-period 1991-04-17 to 2003-03-05. Foreign involvment in petrol-exporting countries has

been fairly low following the early 1990s until 2003. Additionally events in the late 1980s

and later technological changes in oil production, the financial crises and relaxed monetary

policy probably did not influence the fundamental market environment over the sample.

However markets experienced a period of increased volatility around 2000, associated with

events such as the burst of the dotcom-bubble among others. This can be observed in fig-

ure 5.3 and 5.4. Rolling correlations in figure 5.2 however indicate a rather stable correlation

pattern over the test period and thus making the sample a plausbile candidate to test for

Hypothesis Pair 3. Reported numbers are annualized (business-)daily log-returns and their

volatilities (annualized standard-deviations) in percent.

Figure 5.1: Estimation of European Crude Oil and Equity Data

Fluctuation Test sup-LR test, Gauss sup-LR test, t
Crude Oil Equity Crude Oil Equity Crude Oil Equity

l̂i 1998-01-26 1997-07-16 1996-03-15 1997-06-27 1996-03-18 1997-06-30
test statistic 4.78 7.76 378.32 906.98 222.12 526.74

µ̂1 -4.32 15.00 -0.57 14.03 7.77 18.13
µ̂2 16.27 -3.94 8.12 -2.75 14.87 5.39
σ̂1 26.22 12.36 23.59 12.28 23.66 11.38
σ̂2 42.81 27.56 40.28 27.53 40.31 26.41

test statistic 0.771 4.9 7.82
p-value (boot) 0.595 0.495 0.745

l̂D 1995-07-24 1995-07-24 2001-05-25
ρ0 0.0141 0.008 0.032
ρ1 -0.0433 0.011 0.027
ρ2 0.0438 -0.002 0.022
ν̂ 4.99

All procedures strongly reject the hypothesis of constant margins, the critical values at 99

% for the fluctuation test being 1.84 and for the sup-LR tests 15.51. Break-point estimates

lie together very closely for both specifications of the sup-LR tests; based on results in fig-

ure 4.13 we favor the estimates based on the sup-LR test with t-distribtional assumption.

When it comes to testing constant correlation, our empirical findings from section 4.2 di-

rectly carry over to this particular example: Following figure 4.9, it is crucial to apply a

suitable bootstrap here. Using the bootstrapped p-values around or larger than 0.5, neither

fluctuation test and not the sup-LR tests reject Hypothesis Pair 3. Had one used the incor-

rect asymptotic value for the sup-LR test, which is 7.17 at 90 % confidence level, one might

incorrectly reject H0 using the empirically plausible t-distributional assumption.

It has been previously established that incorrectly assuming constant variances when testing

for constant correlation - implicitly by considering covariances as Aue et al. [2009] or explic-

itly by directly using the procedure of Wied et al. [2012b] - leads to flawed inference. But,

as the preceding application points out, even if changes at the marginal distributions are

1Europe Brent, Data is taken from the U.S. Energy Information Administration:
https://www.eia.gov/dnav/pet/hist/

2ISIN: EU0009658145, returns are calculated from the closing price of the last trading day each month.
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taken into account correctly, applying invalid standard asymptotics may lead to incorrectly

rejecting constant cross-sectional dependence.

Figure 5.2: Rolling Correlations, Equity and Crude Oil
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Figure 5.3: Crude Oil, Rolling Volatility
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Figure 5.4: Equity, Rolling Volatility
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6 Concluding Remarks

We have proposed and analyzed parametric two-step procedures for assessing the stability

of cross-sectional dependency measures in the presence of potential breaks in the marginal

distributions. We have focused on sup-LR tests and it could be interesting or further research

to also look at sup-Wald, sup-LM or exponentially weighted test statistics in the spirit of

Andrews and Ploberger [1994]. Moreover, while we have tackled the case of serial dependence

when discussing volatility filtering, it might be interesting to also investigate e.g. changes in

VAR-filtering in the first step of the procedure. Also changes in GARCH or AR parameters

could be investigated.
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