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Abstract

This paper studies optimal non-linear income taxation in an empirically plausi-

ble model with labor supply responses at the intensive (hours, effort) and extensive

(participation) margins. It shows that an Earned Income Tax Credit with nega-

tive marginal taxes and negative participation taxes at the bottom is optimal if

social concerns for redistribution from the poor to the very poor are sufficiently

weak. This result is driven by a previously neglected trade-off between labor sup-

ply distortions at both margins, i.e., between two aspects of efficiency. Numerical

simulations suggest that a strong expansion of the EITC for childless workers in

the US could be welfare-increasing.
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1 Introduction

Governments in all developed countries use labor income taxes and income-based transfers

to redistribute resources from the rich to the poor. The properties of these tax-transfer

schemes differ substantially across countries, though, especially with respect to the treat-

ment of low incomes. In most European countries, public transfers are monotonically

decreasing in the market incomes of the recipients. In the US and some other countries,

in contrast, transfers to the working poor are higher than those to the unemployed and

(sometimes) increasing in earned income. In particular, the Earned Income Tax Credit

(EITC) in the US entails both negative marginal taxes and negative participation taxes

for low-income earners.1 On the one hand, there seems to be a growing consensus among

political practitioners that the EITC is an effective instrument for fighting poverty and

should be further expanded.2 On the other hand, economists have so far struggled to

rationalize the use of tax-transfer schemes with these properties.3 The present paper fills

this gap by providing sufficient conditions as well as a novel explanation for the optimality

of an EITC with negative marginal taxes and negative participation taxes.

The common approach to determine the optimal income tax involves, first, the defini-

tion of a social objective that provides a rationale for redistribution from the rich to the

poor, and second, the maximization of this objective over the set of (non-linear) income

taxes that satisfy the government’s budget constraint, taking into account the agents’

labor supply responses. A large set of papers show that an EITC cannot be optimal

if labor supply responds at the intensive (hours, effort) margin only. A smaller set of

papers find that negative participation taxes may be optimal if labor supply responds at

the extensive (participation) margin only. Both classes of models are inconsistent with

the empirical evidence that labor supply responds at the intensive margin as well as the

extensive margin, however: “the world is obviously a mix of the two models” (Saez 2002:

p. 1054). More specifically, empirical studies consistently find that extensive-margin

responses are particularly important at the bottom of the income distribution: The par-

ticipation elasticity of low-income earners is both larger than their elasticity of hours

worked, and larger than the participation elasticity of medium-income and high-income

earners (see, e.g., Juhn et al. 1991, 2002, Meghir & Phillips 2010).4

The present paper investigates optimal income taxation in a framework that is con-

1The participation tax function is commonly defined as the difference between the net taxes to be
paid at income levels y and 0 (for any positive income y).

2Most prominently, both President Obama and Paul Ryan – then Republican Chairman of the House
of Representatives Budget Committee – proposed to roughly double the maximum EITC payments for
childless workers (see Executive Office 2014, House Budget Committee 2014).

3In particular, most previous papers find that negative marginal income taxes cannot be optimal. I
comment on the most important exceptions in Section 2 below.

4 For additional empirical evidence on how participation elasticities vary across the population, see
Meyer & Rosenbaum (2001), Eissa & Hoynes (2004), Immervoll et al. (2007), Blau & Kahn (2007) and
the surveys by Hotz & Scholz (2003), Eissa & Hoynes (2006), McClelland & Mok (2012).
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sistent with these empirical patterns. In particular, I study a two-dimensional screening

model in which the agents face both marginal costs of providing output as in Mirrlees

(1971) and fixed costs of working as in Diamond (1980). The agents are privately informed

about their fixed costs of working and their skills, where the latter determine the marginal

costs of output provision. To make the model tractable, I assume additive separability be-

tween the fixed-cost component and the other components of the utility function, thereby

following the random-participation approach by Rochet & Stole (2002).5 The analysis

focuses on the empirically and economically relevant cases in which, first, society has

standard concerns for redistribution from higher-income earners to lower-income earners

and, second, participation elasticities are decreasing over the skill dimension.

The paper contributes in four ways to the literature on optimal income taxation.

First, it derives two novel theoretical results on the optimality of an EITC. The first result

identifies two properties that the optimal income tax satisfies whenever society has well-

behaved redistributive concerns: Optimal participation taxes are strictly negative up to a

unique income threshold yk ≥ 0 and positive above that threshold, and optimal marginal

taxes are strictly negative at some income levels below yk and positive everywhere else.

The paper is hence the first to show that negative marginal taxes can only be optimal

(i) at the bottom of the income distribution and (ii) in conjunction with a negative

participation tax, i.e., as part of an EITC. The second result is given by a sufficient

condition for the optimality of such an EITC. This condition can either be expressed in

terms of the model’s primitives – utility functions and type distributions – or in terms

of observable quantities such as labor supply elasticities at both margins, plus the social

concerns for redistribution as captured by marginal welfare weights. In particular, I show

that optimal marginal taxes and participation taxes are negative at low income levels if

society has strong concerns for redistribution from the rich to the poor, but only limited

concerns for local redistribution from the poor to the very poor (i.e., sufficiently flat

welfare weights at the bottom).6 Crucially, this result does not depend on whether labor

supply responds more strongly at the intensive margin or at the extensive margin; it

holds whenever labor supply responds at both margins. I demonstrate that the sufficient

condition on redistributive concerns can be satisfied if the social planner maximizes a

welfare function with standard properties. I also show that this condition is naturally

ensured if the planner’s objective is to reduce the poverty gap, i.e., the average shortfall of

available incomes from the poverty line. It has repeatedly been argued that the objective

of poverty alleviation appears more descriptive for real-world policy choice than standard

welfarist objectives (Besley & Coate 1992, 1995, Kanbur et al. 1994, Saez & Stantcheva

5The same assumption is also used in the closely related paper by Jacquet et al. (2013).
6If society has strong concerns for redistribution from the poor to the very poor, in contrast, optimal

participation and marginal taxes are positive everywhere below the very top, as shown in Appendix B.1
(see also Jacquet et al. 2013).
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2016).7

Surprisingly, only a few previous papers have studied optimal income taxation in

a model with labor supply responses at both margins. Most prominently, Saez (2002)

demonstrates the differences between both one-margin models and provides preliminary

results for a two-margin model. In particular, he shows that marginal taxes for low-income

workers should be negative if the optimal participation taxes (and the participation elas-

ticities) of higher-income earners are sufficiently large (Saez 2002, p. 1055). He does not

clarify in which cases this condition is met, however.8 Nevertheless, the general per-

ception of Saez’ results seems to be that an EITC can be optimal if and only if labor

supply responds more strongly at the extensive margin than at the intensive margin (see,

e.g., Brewer et al. 2010, Piketty & Saez 2013).9 More recently, Jacquet et al. (2013)

provide a condition that ensures the optimality of positive marginal taxes at all income

levels, while participation taxes might still be negative at the bottom. This sufficient

condition is expressed in terms of participation elasticities and social welfare weights; it

effectively requires the social welfare weights of low-income agents to be decreasing with

a sufficiently steep slope. Both papers do not clarify when the optimal tax is given by

a US-style EITC with negative marginal and participation taxes, nor whether this can

happen at all. These are obviously key questions from an applied perspective. They are

also questions of primary theoretical importance, as they challenge the central result of

optimal tax theory that the optimal income tax is always positive (Hellwig 2007).

Second, the paper conducts numerical simulations of the optimal tax schedule, which

allow to assess the quantitative relevance of its theoretical results. For this purpose, I

calibrate the model to the US economy, targeting empirical estimates from the previous

literature and recent Current Population Survey (CPS) data. According to the simula-

tion results, optimal marginal taxes for childless singles may be negative for all incomes

below $15, 000, where a maximal tax credit of approximately $1, 700 is reached. Opti-

mal participation taxes may even stay negative up to incomes around $32, 000. These

numerical results suggest that the optimal tax credit may be more than twice as large as

the current EITC for childless singles in the US.10 In contrast, the simulations by Saez

(2002) and Jacquet et al. (2013) suggest that marginal income taxes should be positive

7The recent political debate supports this view: Proponents of an EITC expansion have mainly em-
phasized its potential to lift many individuals above the poverty line and reduce the depth of poverty for
many others (e.g., Executive Office 2014, House Budget Committee 2014). Following Saez & Stantcheva
(2016), I formalize the poverty alleviation goal by means of generalized welfare weights.

8In the model by Saez (2002), optimal marginal taxes and optimal participation taxes cannot be
determined separately, as they jointly depend on the welfare weights and the intensive and extensive
elasticities. The same is true in the model studied below.

9The present paper contradicts this perception, showing that an EITC can be optimal whenever labor
supply responds at both margins.

10For childless singles, current EITC payments increase up to an earned income around $6.600, where
the peak of $500 is reached (just offsetting payroll taxes in this income range). EITC payments are
larger for single and married parents, for which the model is not calibrated.
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everywhere (while participation taxes should sometimes be negative at low incomes). It

is worth emphasizing that my simulations as well as previous ones concentrate on cases

with monotonically decreasing welfare weights.11

Third, the paper provides a novel intuition for the potential optimality of an EITC. In

particular, it shows that the optimality of negative marginal taxes is driven by an inherent

trade-off between labor supply distortions at both margins, which has not been elucidated

in the previous literature.12 The following thought experiment helps to understand this

trade-off and its implications. Consider an economy populated by agents who differ

both in their skills (very low, low, or high) and in their fixed costs of working, so that

some agents in each skill group choose to remain unemployed for each tax schedule.

Assume that the social planner wants to redistribute some fixed, strictly positive amount

of resources R > 0 from the rich (high-skilled workers) to the poor (unemployed agents,

very-low-skill workers and low-skill workers) in such a way that efficiency is maximized,

i.e., the deadweight loss from distortions at both margins is minimized. Hence, he does

not care for how the resources are distributed among the poor. The properties of the

efficiency-maximizing redistribution scheme can be explained in two steps.

For the first step, assume that the social planner only seeks to minimize the labor

supply distortions at the extensive margin (given some fixed amount R > 0 of redistri-

bution). If he increases the transfer to the unemployed, some workers in all three skill

groups find it attractive to leave the labor market and save the fixed costs of working. If

he increases the transfers to both groups of lower-skill workers, some unemployed agents

in these skill groups find it attractive to enter the labor market, but none of the high-skill

agents has an incentive to leave the labor market. Hence, the second option induces less

distortions at the extensive margin. Accordingly, the efficiency-maximizing tax schedule

involves higher transfers to both groups of low-skill workers than to the unemployed, i.e.,

negative participation taxes.13

But how should these transfers be divided between both groups of lower-skill workers?

To minimize the distortions at the extensive margin, the planner has to apply a version of

the classical inverse elasticity rule. If the very-low-skill agents respond more elastically at

the extensive margin than all higher-skilled agents (in line with the empirical evidence),

the planner should pay smaller transfers to the former than to the latter – put differently,

the income tax has to be decreasing in the relevant income range. For this purpose, the

11The crucial difference is, however, that Saez (2002) and Jacquet et al. (2013) focus on cases where
the concerns for redistribution among the poor are particularly strong, while I consider cases with weaker
concerns for redistribution among the poor.

12While this trade-off is also present in the models by Saez (2002) and Jacquet et al. (2013), the
authors do neither discuss the trade-off itself nor its relevance for the optimality of negative marginal
taxes. In contrast, Jacquet et al. (2013) start by focusing on the trade-off between equity and extensive-
margin distortions in isolation (labeling this reduced problem first-and-a-half best), and then show how
the optimal tax is affected by adding the intensive margin.

13These arguments are closely related to those in papers on optimal income taxation with labor supply
responses at the extensive margin only (see, e.g., Saez 2002 and Christiansen 2015).
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planner has to introduce negative marginal taxes.

For the second step, assume that the social planner also seeks to minimize the labor

supply distortions at the intensive margin. The lower-skilled workers respond to nega-

tive marginal taxes by increasing their output provision, so that labor supply becomes

upwards distorted at the intensive margin. Hence, the planner faces a trade-off between

labor supply distortions at both margins: To reduce the deadweight loss from upward

distortions at the extensive margin, he has to increase the upward distortions at the in-

tensive margin and vice versa. Importantly, the validity of this result does not depend

on whether labor supply responds more strongly at the intensive or the extensive mar-

gin.14 In Section 6, I provide a rigorous formal derivation of this result and a graphical

illustration (see Figures 2a and 2b).

It should also be noted that the optimality of an EITC is not driven by the goal to

maximize efficiency per se, but to maximize efficiency conditional on some redistribution

towards low-income earners. The crucial role of redistribution can be clarified by con-

sidering the alternative problem to minimize the deadweight loss, subject to funding an

exogenous public budget B > 0. Assume that the planner cannot tax the unemployed

due to a non-negativity constraint on consumption. In Appendix B.12, I show that

the efficient-funding scheme involves positive participation taxes and positive marginal

taxes for all skill groups, in stark contrast to the efficient-redistribution scheme identi-

fied above. In this alternative problem, the trade-off between labor supply distortions at

both margins leads to the optimality of strictly positive marginal taxes in the absence of

redistributive concerns.

Fourth, the paper proposes a new strategy to analytically solve multi-dimensional

screening models. The major problem in solving these models is that the set of binding

incentive-compatibility (IC) constraints is a priori unclear. Jacquet et al. (2013) show

that this problem can sometimes be circumvented. In particular, their sufficient condition

ensures that all downwards IC constraints along the skill dimension are binding and that

optimal marginal taxes are positive everywhere, just as in Mirrlees (1971). An EITC

with negative marginal taxes can only be optimal in cases where at least some upwards

IC constraints are binding, however. Hence, I have to develop a new approach to identify

sufficient conditions for the optimality of an EITC.

The methodological innovation of this paper is to study a hybrid model with a contin-

uous set of fixed cost types and a large but discrete set of skill types in the first step, and

to focus on skill sets with sufficiently small distances between adjacent skill types in the

second step. The discrete skill set has two advantages: First, the optimal tax problem

involves a finite number of distinguishable downwards and upwards IC constraints, which

can be added or deleted one by one to study partially relaxed problems. Second, there

14More specifically, the relative sizes of labor supply responses at both margins only affect the levels
of the optimal marginal taxes, but not their signs.
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exist allocations in which both local IC constraints are slack for some pairs of adjacent

skill types.15

The discrete skill set complicates one crucial step of the analysis, however. With a

strictly positive distance between adjacent skill types, it is impossible to check whether a

potentially optimal allocation satisfies a particular IC constraint unless strong functional

form assumptions are imposed. I solve this problem by verifying incentive compatibil-

ity when the distance between adjacent skill types converges to zero. This allows me

to determine unambiguously which IC constraints are binding whenever the skill set is

sufficiently “dense”, i.e., the distance between adjacent skill types is strictly positive but

small. Hence, I study the behavior of the model at the transition between a discrete skill

set and a continuous skill set, exploiting crucial advantages of both model classes.16

The paper proceeds as follows. Section 2 briefly reviews the related literature. Section

3 introduces the model and the optimal tax problem. Section 4 imposes three assumptions

on the primitives of the model and clarifies their implications for observable quantities.

Section 5 presents the theoretical results. Section 6 explains the economic mechanism

underlying these results, focusing on the trade-off between labor supply distortions at

both margins. Section 7 provides numerical simulations for a version of the model that

is calibrated to the US economy. Section 8 concludes. Appendix A contains all formal

proofs, and Appendix B provides supplementary results and graphical illustrations.

2 Related literature

The paper contributes to the vast literature on optimal non-linear income taxation that

aims to determine the signs (in the first step) and the levels (in the second step) of optimal

tax rates across the income distribution. Most of this literature focuses on two classes

of models that differ in the type of costs agents face and, correspondingly, the margin at

which they respond to tax changes.

First, a large number of papers follow Mirrlees (1971) by assuming that the agents face

only variable costs of providing effort, which are affected by a single private parameter

referred to as skill. In these models, labor supply responds to tax changes at the intensive

(hours, effort) margin only. The “central result” (Hellwig 2007: 1449) of this literature is

that the optimal marginal tax is strictly positive almost everywhere.17 This result holds

whenever the welfare function gives rise to a desire for redistributing resources from

15With a continuous skill set, downwards and upwards IC constraints are collapsed into an envelope
condition that is satisfied with equality in every implementable allocation.

16Note that my formal proofs exploit the discreteness of the skill set, and would hence not be valid
with a continuous skill set as in Jacquet et al. (2013). Lemma 26 in Appendix B.6 suggests, however,
that the qualitative results of this paper remain unchanged in the limit case where the discrete skill set
converges to an interval.

17The optimal marginal income tax is only zero at the very top and, under certain conditions, at the
very bottom of the income distribution.
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higher-skilled to lower-skilled agents (see, amongst others, Seade 1977, 1982, Hellwig

2007). Notably, the same results apply whether the skill set is continuous or discrete (see

Stiglitz 1982 and Hellwig 2007).18

Second, a smaller set of papers follow Diamond (1980) by studying models in which

the agents do not only differ in skills, but also in fixed costs of working. This strand of

the literature was revived by Saez (2002) and a series of papers by Laroque (2005) and

Choné & Laroque (2005, 2011). In their models, there are no variable costs of providing

output. Hence, all agents prefer to either work at full capacity or to be unemployed: labor

supply responds to tax changes at the extensive (participation) margin only. The authors

find that optimal participation taxes are negative at low income levels if and only if the

social planner cares almost as much for the low-skilled workers as for the unemployed

(see Diamond 1980, Saez 2002, Choné & Laroque 2011, Christiansen 2015). The authors

mostly do not compute optimal marginal taxes because they do not lead to distortions,

i.e., they are economically irrelevant. Again, the results do not depend on whether the

skill set is continuous as in Choné & Laroque (2011) or discrete as in Christiansen (2015).

Finally, there exist a few papers that study optimal income taxation with labor supply

responses at both margins. Saez (2002) strongly advocates the mixed model based on its

empirical relevance and discusses how the mechanisms of this model differ from the pure

intensive and the pure extensive model. He is also the first to show that negative marginal

taxes at low-income levels are compatible with a standard desire for redistribution if both

the optimal participation taxes and the participation elasticities of higher-income earners

are sufficiently large.19 Unfortunately, this crucial insight does not allow to verify the

optimality of an EITC because the optimal participation taxes are endogenous entities

that depend on the redistributive concerns, the labor supply elasticities and the optimal

marginal taxes themselves. Additionally, Saez (2002) provides numerical simulations of

the optimal income tax, finding throughout positive marginal taxes and (sometimes)

negative participation taxes at low income levels.

Mostly closely related to my paper, Jacquet et al. (2013) study optimal income tax-

ation in a random participation model with two-dimensional heterogeneity. The main

result of Jacquet et al. (2013) is given by a sufficient condition for the optimality of pos-

itive marginal taxes. While this condition is expressed in terms of endogenous entities –

participation elasticities and marginal social weights – as acknowledged by the authors,

they also provide examples for which it is unambiguously satisfied. For example, the con-

18In this setting, negative marginal taxes can only be optimal if the planner has a non-standard desire
to redistribute resources from low-income earners to high-income earners as in Choné & Laroque (2010)
and Brett & Weymark (2017), or if the agents fail to maximize their own well-being, e.g., due to a present
bias as in Lockwood (2017).

19Note that Saez (2002) refers the difference between the (net) taxes paid by the lowest-skilled workers
and the unemployed as the “marginal tax at the bottom”, while the more recent literature labels this
tax difference the “participation tax at the bottom” to avoid confusion. In this paper, I adopt the
terminology used in the recent literature, including Jacquet et al. (2013).
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dition holds if (a) higher-skilled workers respond more elastically at the extensive margin

that lower-skilled workers, in line with the empirical evidence, (b) social welfare weights

are decreasing along the income distribution, and (c) the social planner associates welfare

weights below the population average even to the lowest-skilled workers, i.e., cares much

more for the unemployed than for the working poor.20 Moreover, they perform numerical

simulations, finding that the optimal marginal tax is positive in all considered cases, while

the optimal participation tax is sometimes negative (as in Saez 2002).21

The main difference between the models in Jacquet et al. (2013) and in this paper

is that they consider a type set that is continuous in both dimensions, while I study a

hybrid model with a discrete set of skill types and a continuous set of fixed cost types.22

At first sight, the discreteness of my model might seem to introduce additional complex-

ity. However, it also simplifies the distinction between downward and upward incentive

compatibility and, in particular, the derivation of my main results.

Finally, Beaudry et al. (2009) show that an EITC with negative marginal taxes is

always optimal in a two-dimensional screening model that deviates in several aspects from

the previously discussed literature. First, the agents do not face fixed costs of working, but

opportunity costs related to the possibility of generating (higher) income in an informal

or black labor market. Hence, the social planner holds a desire to redistribute resources

from unemployed agents (the workers in the informal sector) to formally employed agents

with identical skills. Second, the planner is able to observe hours worked in the formal

sector and, consequently, to condition tax payments on the wages of formally employed

agents. Due to these two properties and in contrast to my model, an EITC with negative

marginal taxes is always optimal for agents earning wages below some cutoff wage, and

the optimal transfers to unemployed agents are always zero.

3 Model

The following subsection presents a two-dimensional screening model in which labor sup-

ply responds to tax changes at the intensive margin and the extensive margin. Subsection

3.2 provides formal definitions of the optimal tax problem and of labor supply distortions

at both margins. Subsection 3.3 explains how allocations can be decentralized via non-

linear income taxes, and Subsection 3.4 discusses the relation between social objective

functions and marginal social welfare weights.

20The present paper clarifies that negative marginal taxes can be optimal if condition (c) is dropped.
21Lorenz & Sachs (2012) complement these results by providing a condition under which optimal

participation taxes are positive everywhere. Lehmann et al. (2014) and Scheuer (2014) use similar
random-participation models to study optimal taxation with labor supply responses at the intensive
margin and another extensive margin. In particular, the agents can choose to migrate in Lehmann et al.
(2014), and change their occupation in Scheuer (2014). Although their models and research questions
differ from those in my paper, the mechanisms at work are similar.

22Besides, their analysis is somewhat more general in allowing for income effects in labor supply.
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3.1 The economy

The set of agents is given by a continuum of mass one and denoted by I, with typical

element i. Agent i’s consumption is denoted by ci, his contribution to the economy’s

output by yi. Agent i derives utility from consumption and suffers from the cost of

providing output. This cost can be separated into a variable effort cost and a fixed cost

of participating in the labor market. Formally, individual preferences can be represented

by the following utility function:23

u(ci, yi;ωi, δi) = ci − h
(
yi, ωi

)
− 1yi>0 δ

i . (1)

The fixed cost of participating in the labor market is given by an individual parameter δi ∈
∆, which I refer to as agent i’s fixed cost type. The variable effort cost of providing output

is measured by function h. It depends on the output level yi and an individual parameter

ωi ∈ Ω, which I refer to as i’s skill type. Absolute and marginals cost of providing

output are decreasing in this parameter, so that hω(yi, ωi) < 0 and hyω(yi, ωi) < 0 for

all yi > 0 and ωi ∈ Ω. Moreover, h is strictly increasing and strictly convex in yi, so

that hy(y
i, ωi) > 0 and hyy(y

i, ωi) > 0 for all yi > 0 and ωi ∈ Ω. Finally, h is assumed

to satisfy h(0, ωi) = 0, hyyω(y, ω) ≤ 0 for all yi > 0 and ωi ∈ Ω as well as the Inada

conditions limy→0 hy(y
i, ωi) = 0 and limy→∞ hy(y

i, ωi) =∞ for all ωi ∈ Ω.

Agent i is privately informed about his skill type ωi and his fixed cost type δi. The

skill set Ω is given by a finite ordered set {ω1, ω2, . . . , ωn} with ωj+1/ωj ≥ 1 + ε for all

j ∈ {1, 2, . . . , n− 1} and some ε > 0. The set of fixed costs ∆ is given by a closed interval

with lower endpoint δ and upper endpoint δ̄, assumed to satisfy

δ < max
y>0

y − h (y, ω1) , δ̄ > max
y>0

y − h (y, ωn) . (2)

Under laissez-faire, agents with fixed cost type δ and any skill type ω ∈ Ω would thus

provide positive output, while agents with fixed cost type δ̄ and any skill type ω ∈ Ω

would provide zero output.24 As will become clear below, the combination of a discrete

set of skills and a continuous set of fixed costs helps to explain the interaction between

labor supply distortions at both margins.

The joint cross-section distribution of the pair (ωi, δi) in the population at large is

commonly known and denoted by K : Ω×∆→ [0, 1]. The share of agents with skill type

ωj, which I henceforth refer to as skill group j, is given by the number fj > 0 for any

j ∈ J . The distribution function of fixed cost types in skill group j is twice continuously

differentiable and denoted by Gj. The corresponding density function gj is bounded from

below by some number g > 0 for all δ ∈ ∆ and there exists some closed subset of ∆ on

23I comment on the implications of the functional form imposed by (1) below.
24This ensures that tax changes may affect the participation decisions of agents in all skill groups.
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which gj is weakly decreasing.

3.2 The optimal tax problem

I use a mechanism design approach to solve for the optimal non-linear income tax. Thus,

I study the problem to maximize a social objective (to be defined below) over the set of

implementable, i.e., feasible and incentive-compatible, allocations. An allocation is given

by two functions c : Ω×∆→ R and y : Ω×∆→ R+
0 that specify the consumption and

output levels for all types in Ω×∆. It is feasible if overall consumption does not exceed

overall output, i.e., ∫
Ω×∆

c(ω, δ)dK(ω, δ) ≤
∫

Ω×∆

y(ω, δ)dK(ω, δ), (3)

and incentive-compatible if

u (c(ω, δ), y(ω, δ);ω, δ) ≥ u (c(ω′, δ′), y(ω′, δ′);ω, δ) (4)

for all types (ω, δ) and (ω′, δ′) in Ω×∆.

This maximization problem can be simplified considerably by focusing on the set of

allocations that are implementable and (second-best) Pareto efficient.25 In particular,

Lemma 1 shows that any such allocation involves pooling by n+ 1 sets of different types.

Lemma 1. Every allocation (c, y) that is implementable and Pareto efficient (in the set

of implementable allocations) is characterized by two vectors (yj)
n
j=1, (cj)

n
j=0 such that,

• for each j ∈ J = {1, 2, . . . , n}, all agents with skill type ωj and fixed cost type

δ ≤ δj := cj − h(yj, ωj)− c0 receive bundle (cj, yj), and

• all other agents receive bundle (c0, 0).

By Lemma 1, any implementable and (second-best) Pareto efficient allocation satisfies

two properties. First, all agents with skill type ωj ∈ Ω and fixed cost types below

the (endogenous) participation threshold δj provide the same output level yj > 0 and

receive the same consumption level cj > 0. Second, all other agents provide zero output

and receive the same consumption level c0. Both properties are driven by the additive

separability of the fixed cost component δ in utility function (1), which follows the random

participation approach by Rochet & Stole (2002).

Below, I will investigate the labor supply distortions in the optimal allocation. By

Lemma 1, this can be done jointly for all agents in each skill group j ∈ J . Consider an

allocation in which the output level and the participation threshold of skill group j are

25For all welfare functions considered below, the welfare-maximizing allocation is ensured to be (second-
best) Pareto efficient by standard reasons.
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given by yj and δj, respectively. The labor supply distortions at both margins can be

determined as follows.

First, labor supply in skill group j is said to be downwards distorted at the intensive

margin if the marginal rate of substitution, hy (yj, ωj), is strictly smaller than 1, the

economy’s marginal rate of transformation. Labor supply is said to be upwards distorted

at the intensive margin if hy (yj, ωj) is strictly larger than 1. Intuitively, there is an

intensive-margin distortion if the cost of a small increase in the skill-specific output yj

differs from the gain due to the additional consumption.

Second, labor supply in skill group j is said to be distorted downward at the ex-

tensive margin if the skill-specific participation threshold δj is strictly smaller than

δ∗(ωj) := maxy>0 y − h(y, ωj), the first-best level of this threshold. Labor supply is said

to be distorted upward at the extensive margin if δj is strictly larger than yj − h(yj, ωj).

Intuitively, there is an extensive-margin distortion if the cost of entering the labor market,

i.e., of a large increase in output, differs from the gain due to the additional consumption

for some agents with fixed-cost types close to the skill-specific threshold δj.
26

The definition of distortions at the intensive margin is standard in the optimal tax

literature. In contrast, the previous literature has not provided a definition of labor

supply distortions at the extensive margin. Both definitions provided above follow from

the same thought experiment, however, which I explain in detail in Appendix B.7.

Finally, an allocation is said to be efficient if it does not involve labor supply distortions

at any margin. Using Lemma 1, the efficiency losses in all other allocations can be

evaluated based on the implied deadweight loss, defined as

DWL(c, y) :=
n∑
j=1

fj

∫ δ∗(ωj)

δ

gj(δ) [δ∗(ωj)− δ] dδ

−
n∑
j=1

fj

∫ δj

δ

gj(δ) [yj − h(yj, ωj)− δ] dδ , (5)

where δj = cj − h(yj, ωj)− c0 as derived in Lemma 1.27

3.3 Decentralization

In Section 5 below, I provide the main results of this paper by characterizing the labor

supply distortions in the optimal allocation at both margins. As I demonstrate in the

following, these results can straightforwardly be translated into statements about the

signs of the optimal marginal tax and the optimal participation tax.

26For an agent with type (ωj , δj), the cost of entering the labor market and providing output y is given
by δj + h(y, ωj), while the associated gain in consumption utility equals y.

27In Appendix B.8, I explain the derivation of (5) and show that the overall deadweight loss can be
decomposed in efficiency losses from distortions at both margins.
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Consider the class of social choice functions that are decentralized through non-linear

income tax schedules, mapping output levels into tax payments. I denote by (cT , yT ) the

social choice function that is decentralized by tax function T . The literature also refers

to yT as pre-tax income, and to cT as post-tax income. Tax function T is admissible if

the tax revenue is non-negative,
∫

Ω×∆
T [yT (ω, δ)] dK (ω, δ) ≥ 0.

The problem of an agent with type (ω, δ) is to choose income y in order to maximize

U(c, y;ω, δ), subject to the individual budget constraint c = y − T (y). To simplify the

exposition, assume that T is continuously differentiable and weakly concave. Then, the

solution to this program is given by

yT (ω, δ) =

{
y∗T (ω) if δ ≤ δT (ω)

0 if δ > δT (ω),
(6)

where y∗T (ω) is implicitly defined by

1− T ′ [y∗T (ω)] = hy (y∗T (ω), ω) , (7)

and δT (ω) := y∗T (ω)− h (y∗T (ω), ω)− [T (y∗T (ω))− T (0)].

The case distinction again results due to the additive separability imposed by (1).

Conditional on working, the agent’s optimal income y∗T (ω) is defined by the first-order

condition (7), which involves only his skill type ω and the marginal tax T ′.28 Conse-

quently, participating in the labor market can increase the agent’s utility at most by

δT (ω), the net gain from increased consumption and increased effort costs. If and only

if his fixed cost δ is lower than δT (ω), the agent is better off providing the conditionally

optimal output y∗T (ω) than zero output.

By the taxation principle, any implementable and Pareto-efficient allocation allocation

can be decentralized by a non-linear tax schedule T so that (cT , yT ) = (c, y). The required

properties of tax T depend on the labor supply distortions in allocation (c, y). First, as

usual, if labor supply in skill group j is downwards (upwards) distorted at the intensive

margin, the marginal tax at income level y∗T (ωj) = yj must be strictly positive (negative).

Second, if labor supply in skill group j is downwards distorted at the extensive margin,

δj < δ∗(ωj), the participation tax T (y)−T (0) must be strictly positive at the income level

that maximizes y−h(y, ωj).
29 Correspondingly, if labor supply in skill group j is upwards

distorted at the extensive margin, the participation tax at income level y∗T (ω) = yj must

be strictly negative. Intuitively, a positive (negative) participation tax is required to

ensure that the agent chooses to inefficiently stay out of the labor market (to inefficiently

work).

28For the sake of clarity, this paragraph abstracts from the complications that may arise if T is not
continuously differentiable or strictly convex.

29As shown above, an agent self-selects zero income if his fixed cost type δ exceeds y − h(y, ω) −
[T (y)− T (0)], the utility gain of participation, for all positive income levels.

12



3.4 The social objective

In optimal tax theory, the social objective is usually given by a welfare function that is

taken to be an increasing function of individual utilities that gives rise to a “desire for

redistribution” (Hellwig 2007). A standard assumption is that the welfare function can

be expressed as∫
Ω×∆

γ(ω, δ) Ψ
(
c(ω, δ)− h [y(ω, δ), ω]− 1y(ω,δ)>0 δ

)
dK(ω, δ), (8)

where the transformation Ψ : R → R is strictly increasing and weakly concave, and the

weighting function γ : Ω×∆→ R+ is weakly decreasing in ω and weakly increasing in δ.

The desire for redistribution is either introduced through transformation Ψ or through

type-dependent weights γ; with quasi-linear preferences, it would not be present if welfare

were given by the unweighted sum of individual utilities.

As common in the literature, I express the social concerns for redistribution by means

of marginal welfare weights. By Lemma 1, the government can only redistribute resources

between the n + 1 groups of agents who provide different output levels: the group of

unemployed agents and the groups of workers with each skill type ωj ∈ Ω. Hence, I

focus on the average welfare weights associated to these groups, evaluated at the welfare-

maximizing allocation. I define the welfare weight ᾱj of the workers in skill group j ∈ J
as the marginal welfare effect of increasing the skill-specific consumption level cj,

ᾱj := Eδ [γ(ωj, δ) Ψ′ (cj − h (yj, ωj)− δ) | δ ≤ δj] . (9)

Correspondingly, I define the welfare weight ᾱ0 of unemployed agents as the marginal

welfare effect of increasing c0, the consumption level of all unemployed agents,

ᾱ0 := Eωj ,δ [γ(ωj, δ) Ψ′ (c0) | δ < δj, j ∈ J ] . (10)

The average weight across the population is given by

ᾱM :=

∫
Ω×∆

[
(ᾱj − ᾱ0)1y(ω,δ)>0 + ᾱ0

]
dK(ωj, δ). (11)

In an economy with heterogeneity in skills only, the concavity of Ψ and the mono-

tonicity of γ ensure that the sequence of welfare weights is monotonically decreasing over

the skill distribution, i.e., that society has a standard concern for redistribution from

higher-income earners to lower-income earners. In the economy with two-dimensional

heterogeneity considered here, the same assumptions fail to ensure monotonic welfare

weights. For example, the welfare weight of skill group j may be larger than the welfare

weight of a lower-skilled group j − 1 if the agents in the former group face on average
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higher fixed costs of working. More generally, the slope of the welfare weights depends

on the properties of Ψ (and γ) as well as the joint type distribution K.30

Following Saez & Stantcheva (2016), the concept of marginal welfare weights can

be generalized to capture redistributive preferences implied by non-welfarist objectives.

Indeed, the recent public debate about expanding the EITC for childless workers did

not refer to social welfare considerations. Instead, proponents of an EITC expansion –

including President Obama and Paul Ryan, then Chairman of the House of Representa-

tives Budget Committee – have primarily argued that the proposed reform would lift a

substantial number of childless workers above the poverty line and reduce the depth of

poverty for many more workers (Executive Office 2014, House Budget Committee 2014).

In line with these observations, a number of previous papers suggest to consider the goal

of alleviating poverty – as measured by the available income instead of individual utility

– as a way to provide better insights into the real-world design of redistributive policies

(Besley & Coate 1992, 1995, Kanbur et al. 1994, Saez & Stantcheva 2016).

In particular, Saez & Stantcheva (2016) suggest to formalize the goal of poverty gap

reduction by setting generalized welfare weights equal to a constant αp > 1 for all agents

with consumption below an exogenous poverty threshold c̄ > 0, and equal to some con-

stant αnp ∈ [0, 1) for all agents with c > c̄. In Appendix B.13, I consider a slightly

generalized formalization that eliminates the discontinuity at the poverty threshold c̄,

while maintaining the basic pattern of piecewise constant, monotonically decreasing wel-

fare weights.31

In the remainder of this paper, I restrict my attention to social objectives that give

rise to monotonically decreasing weight sequences, which seems to be the most natural

and economically most relevant case. This restriction also simplifies the comparison of

my results with those in the standard Mirrlees (1971) framework: With intensive-margin

responses only, monotonic welfare weights ensure the positivity of the optimal marginal

tax. If the optimal income tax turns out to have non-standard properties in my model,

they must hence be driven by the interaction of labor supply responses at the intensive

and extensive margins.

To simplify the exposition, I henceforth treat the group-specific welfare weights as if

they were exogenous objects and denote them by α = (α0, α1, . . . , αn). Without loss of

generality, I focus on weight sequences that are normalized to have an average weight of

1. I denote the set of decreasing, normalized weight sequences by A.

30In Appendix B.9, I provide conditions on Ψ, γ and K that jointly ensure a monotonically decreasing
sequence of social weights ᾱ. Additionally, I provide an example in which ᾱ is locally increasing although
Ψ is strictly concave.

31This generalization allows to capture the idea that the social planner may be concerned about pushing
non-poor agents close to the poverty line. I discuss the relation of these formalizations to other poverty
measures in Appendix B.13.
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4 Assumptions

In Subsection 4.1, I impose a set of assumptions on the joint type distribution and

the effort cost function, i.e., the primitives of the model. Subsection 4.2 clarifies the

implications of these assumptions for labor supply elasticities. The relevance of each

assumption for the results of this paper is discussed in the subsequent sections.

4.1 Assumptions on primitives

The first two conditions impose restrictions on the joint type distributions, expressed in

terms of the hazard rates of fixed costs distributions. Fix a skill type ωj. Recall that Gj

denotes the cdf of the distribution of fixed cost types in the group of agents with this

skill type. The hazard rate of this cdf is given by Aj(δ) :=
gj(δ)

Gj(δ)
.

Condition 1. The joint type distribution has the following properties:

(i) For each j ∈ J , Aj(δ) is strictly decreasing in δ.

(ii) For each j ∈ J−n := J \ {n} and δ ∈ ∆, Aj(δ) ≥ Aj+1(δ).

Condition 1 requires the hazard rates of Gj to be decreasing along both type dimen-

sions.32 Part (i) is a standard monotone hazard rate condition that is satisfied whenever

the conditional fixed-cost distributions are log-concave. Part (ii) rules out a specific type

of positive joint variation between skill types and fixed cost types. For some distribution

functions, it is identical to the assumption that Gj weakly dominates Gj+1 in the sense

of first-order stochastic dominance.33

The second condition compares the previously defined cdf hazard rate Aj(δ) with the

hazard rate of the corresponding pdf in the same skill group j. I denote this pdf hazard

rate by aj :=
g′j(δ)

gj(δ)
.

Condition 2. The joint type distribution has the following properties:

(i) For each j ∈ J , aj(δ) is weakly decreasing in δ with
daj(δ)

dδ
∈
[
2

dAj(δ)

dδ
, 0
]
.

(ii) For each j ∈ J−n and δ ∈ ∆, 0 ≤ aj(δ)− aj+1(δ) ≤ 2 [Aj(δ)− Aj+1(δ)].

Condition 2 imposes two novel conditions that have not been used in the literature

before.34 They require that the pdf hazard rate aj varies across both type dimensions in

the same direction as the cdf hazard rate Aj, but at a sufficiently small rate compared to

32The same assumption is used by Choné & Laroque (2011) and Jacquet et al. (2013). Scheuer (2014)
imposes a similar but stricter assumption on the joint type distribution.

33In general, Condition 1 (ii) is neither implying nor implied by first-order stochastic dominance.
34For the discrete set of skills studied here, Condition 2 gives rise to a monotonicity result that simplifies

the following analysis. With a continuous set of skills as in most previous papers, this monotonicity result
would come for free.

15



the latter. Both parts of Condition 2 are satisfied, e.g., if the fixed cost distributions are

uniform or logistic for all skill groups. Moreover, part (ii) trivially holds whenever skill

types and fixed cost types are independently distributed.35

The third condition imposes mild restrictions on the effort cost function h.

Condition 3. There are two numbers µ1 ∈ (0,∞) and µ2 ∈ (0,∞) such that, for each

y > 0 and ω > ω1, the effort cost function h satisfies

(i) 1
y

hy(y,ω)

hyy(y,ω)
≤ µ1, and

(ii) −ω
y

hyω(y,ω)

hyy(y,ω)
≥ µ2.

Condition 3 is satisfied for all commonly used functional forms, including the class of

functions given by h(y, ω) = 1
1+1/σ

(
y
ω

)1+1/σ
for any σ ∈ (0,∞).

4.2 Implications for labor supply elasticities

Condition 1 puts a restriction on the relative responses at the extensive margin in different

skill groups. It proves helpful to measure these responses by the semi-elasticity ηj of

participation, formally defined by

ηj(c, y) :=
∂Gj (cj − h (yj, ωj)− c0)

∂cj

1

Gj (cj − h (yj, ωj)− c0)
= Aj(δj) (12)

for each skill group j ∈ J .36 Condition 1 ensures consistency with the stylized fact that

low-skill workers respond more elastically at the extensive margin than high-skill workers

(see, e.g., Juhn et al. 1991, 2002 and Meghir & Phillips 2010).

Lemma 2. For each j ∈ J−n, skill group j has a strictly larger semi-elasticity of partic-

ipation than skill group j + 1, ηj(c, y) > ηj+1(c, y), in every implementable allocation.

As can be seen from equation (12), the semi-elasticities of participation are endogenous

objects that vary with allocation (c, y). In particular, Condition 1 implies that a uniform

increase in the consumption levels of workers in skill groups j and j+1 leads to a reduction

in the semi-elasticities ηj and ηj+1. The effect on the ratio of both semi-elasticities

η̂j,j+1 := ηj/ηj+1 can go in any direction and have any magnitude, however. Condition 2

rules out erratic fluctuations of η̂j,j+1 by imposing bounds on the semi-elasticity εη̂,c of

this ratio with respect to such a uniform transfer.37

35In Appendix B.10, I provide a set of commonly used distribution functions for which Conditions 1
and 2 are satisfied.

36More precisely, ηj represents the semi-elasticity of the participation share Gj(δj) with respect to the
net-of-tax income cj = yj − T (yj) faced by the workers with skill type ωj . It indicates by how much
percent the participation share in skill group j increases if cj is increased by one unit.

37Formally, I define the semi-elasticity of the relative participation responses η̂j,j+1 as εη̂,c(c, y) :=
∂η̂j,j+1(δj ,δj+1,0)

∂c′
1

η̂j,j+1(δj ,δj+1,0) , where η̂j(δj , δj+1, c
′) =

gj(δj+c′)
Gj(δj+c′)

Gj+1(δj+1+c′)
gj+1(δj+1+c′) .
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Lemma 3. For each j ∈ J−n, the semi-elasticity of the relative participation responses

η̂j,j+1 := ηj/ηj+1 with respect to uniform transfers satisfies

|εη̂,c(c, y)| < ηj(c, y)− ηj+1(c, y) . (13)

For this inequality to hold, uniform transfers towards adjacent skill groups may in-

crease or decrease the relative responses η̂j,j+1, but need to have sufficiently small effects

in absolute terms. While εη̂,c is in principle an observable object, I am not aware of any

empirical results on the effects of tax reforms on participation elasticities (and their ra-

tios). Most relatedly, Juhn et al. (1991, 2002) find that relative participation elasticities

for different percentiles of the wage distribution have hardly changed between the 70s

and the late 80s. Besides, a back-of-the-envelope calculation suggests that condition (13)

is reasonably weak.38

Finally, Condition 3 puts mild restrictions on the labor supply responses at the inten-

sive margin. Effectively, it ensures that the individually optimal income does not respond

in a degenerate way to tax changes.

Lemma 4. For each j ∈ J , the elasticity of income with respect to

(i) the retention rate 1− T ′(y) is bounded from above by some number µ1 ∈ (0,∞);

(ii) the skill level ω is bounded from below by some number µ2 ∈ (0,∞).

Condition 3 can hence be regarded as a weak regularity condition that guarantees a

minimal degree of consistency with the empirical evidence. It is worth noting that the

results of this paper would be unaffected if I would directly assume the before-mentioned

properties of labor supply elasticities to hold, instead of imposing assumptions on the

primitives in the first place.

5 Results

In the following, I present the formal results of this paper. As Jacquet et al. (2013), I

start by solving a relaxed version of the optimal tax problem. The analysis of this relaxed

problem allows to build up intuition and, eventually, to construct the sufficient condition

for an optimal EITC. I then turn to the non-relaxed problem and the main results of

this paper on the optimal distortions at both margins. As explained in Subsection 3.3,

these results can easily be translated into results on the optimal signs of marginal and

38If the participation elasticities for low-skill workers with earnings $1, 000 and $1, 500 are both given
by 0.5 as assumed by Saez (2002) and the income tax is approximated as in Section 7, the ratio η̂j,j+1

is given by 1.5. Hence, the semi-elasticity of participation in the first group is 50% higher than in the
second group. Condition (13) requires this relative difference to remain between 32.3% and 67.7% after
an (additional) uniform transfer of $500 to both groups.
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participation taxes. The economic mechanism behind these results is explained in Section

6 below. In particular, Section 6 derives the key features of the optimum in a simplified

setting that can be interpreted as an extended two-type model.

5.1 Preliminary results

I start by studying a relaxed version of the optimal tax problem that ignores the incentive

compatibility (IC) constraints between working agents with different skill types. More

precisely, I study the problem of maximizing social welfare (8) subject to the feasibility

constraint (3) and the subset of IC constraints, first, between all agents with identical

skill types,

u (c(ω, δ), y(ω, δ);ω, δ) ≥ u (c(ω, δ′), y(ω, δ′);ω, δ) (14)

for each ω ∈ Ω and δ, δ′ ∈ ∆, and second, between all unemployed agents,

c(ω, δ) ≥ c(ω′, δ′) (15)

for each pair (ω, δ) and (ω′, δ′) in Ω×∆ such that y(ω, δ) = y(ω′, δ′) = 0.

Lemma 1 continues to apply to the set of allocations satisfying this reduced set of

IC constraints. Hence, the solution to the relaxed problem involves, first, pooling by all

unemployed agents and, second, pooling by all working agents with the same skill type.

Moreover, an agent with skill type ωj provides positive output if and only if his fixed cost

type is below the skill-specific threshold δj = cj − h(yj, ωj)− c0. As a result, the solution

to the relaxed problem for the social weight sequence α can be denoted by the vectors(
cαRj
)n
j=0

,
(
yαRj
)n
j=1

and
(
δαRj
)n
j=1

.

Lemma 5. There is a number χ ∈ (1, 2] such that, if αj ∈ [0, χ) for all j ∈ J , the relaxed

problem has a unique solution that satisfies

hy(y
αR
j , ωj) = 1 ∀ j ∈ J , and (16)

δαRj − δ∗(ωj) =
αj − 1

Aj(δαRj )
∀ j ∈ J . (17)

Lemma 5 shows that the insights from Lemma 1 in Jacquet et al. (2013) extend to my

model with a discrete skill set and, additionally, clarifies the conditions for the existence

of a well-behaved solution. In particular, it indicates that the relaxed problem is well-

behaved if the social weights of all groups of workers are below some threshold χ ∈ (1, 2].

For higher social weights, in contrast, an allocation may satisfy the first-order conditions,

but violate a second-order condition. This is a well-known problem for models with labor
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supply responses at the extensive margin.39 The resulting technical complications are not

directly related to the research question of this paper. Hence, I proceed by restricting my

attention to a subset of social weight sequences for which the existence of a well-behaved

solution is ensured. In particular, I define the set Aχ ⊂ A as the subset of decreasing

weight sequences for which each element α1, . . . , αn is below the threshold χ. All results

in the remainder of this paper will be derived for weight sequences in Aχ.

Second, equations (16) and (17) characterize the labor supply distortions in the solu-

tion to the relaxed problem. At the intensive margin, optimal output yαR is undistorted

in all skill groups. This does not come as a surprise, because the IC constraints between

different skill groups have not been taken into account in the relaxed problem.40 At the

extensive margin, in contrast, optimal output yαR can be distorted in both directions.

In particular, labor supply is distorted downwards at the extensive margin in each skill

group with a social weight below the average weight of 1, and distorted upwards in each

skill group with a weight above 1. With decreasing social weights, upwards distortions

can only be optimal at the bottom of the skill distribution, consequently.

These results give rise to the crucial questions whether the introduction of the previ-

ously omitted IC constraints, first, leads to downwards, upwards or no distortions at the

intensive margin, and second, changes this simple pattern of distortions at the extensive

margin. In particular, upwards distortions at the intensive margin can only be expected

to be optimal if the solution to the relaxed problem violates the upward IC constraints,

cαRj − h
(
yαRj , ωj

)
≥ cαRj+1 − h

(
yαRj+1, ωj

)
, (18)

for some pairs of adjacent skill types (ωj, ωj+1). In an intensive-margin model à la Mirrlees

(1971), this is impossible as long as social weights are decreasing, αj ≥ αj+1. In the

present model with labor supply responses at both margins, the answer to this question

is more subtle.

In the relaxed problem’s solution, the workers in skill group k ∈ {j, j + 1} receive a

bundle (ck, yk) that satisfies cαRk −h
(
yαRk , ωk

)
= δαRk + cαR0 . Using the implicit definitions

of δαRj and δαRj+1 in equation (17) and rearranging terms, one finds that the upward IC

constraint between skill groups j and j + 1 is violated if and only if

αj+1 − 1

ηj+1 (cαR, yαR)
>

αj − 1

ηj (cαR, yαR)
+ Bj , (19)

where the term Bj is strictly positive and depends on the distance between ωj and ωj+1

39Formally, the Lagrangian can become strictly convex in cj for αj > χ. In this case, the welfare
function may have multiple local extrema (see discussion in Choné & Laroque 2011). Jacquet et al.
(2013) do not comment on this complication or on the conditions for a well-behaved solution.

40In the classical model by Mirrlees (1971), distortions at the intensive margin are optimal because
they allow to relax the binding (downwards) IC constraints between adjacent skill types.
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and on εy,1−T ′ and εy,ω, the elasticities of income with respect to the retention rate and

the skill level.41

By equation (19), it mainly depends on two statistics whether the upward IC con-

straint between skill types j and j + 1 is satisfied or violated: the social weights αj and

αj+1 and the semi-elasticities of participation ηj and ηj+1. Recall that αj is larger than

αj+1 for all considered weight sequences, and that ηj is larger than ηj+1 by Lemma 2.

Hence, equation (19) provides two important insights. First, the upward IC constraint

can only be violated if both social weights αj and αj+1 are above the population average

of 1 and relatively close to each other. Second, if this condition is met, then an increase in

the relative participation responses ηj/ηj+1 makes the upward IC constraint more likely

to be violated.

Both insights are limited by the fact that the semi-elasticities ηj and ηj+1 are en-

dogenous quantities that depend on the social weights αj and αj+1. To proceed, I can

however exploit that equation (19) implicitly defines a function βUj : [0, χ)→ R such that

the upward IC constraint is violated if and only if αj+1 > βUj (αj). Similarly, I can use

equation (17) to define a function βDj : [0, χ)→ R such that the downward IC constraint

cαRj+1 − h
(
yαRj+1, ωj+1

)
≥ cαRj − h

(
yαRj , ωj+1

)
, (20)

is violated if and only if αj+1 < βDj (αj). For both functions, there exist no closed-form

expressions. Nevertheless, I can use them to study the conditions under which each local

IC constraint is violated in allocation (cαR, yαR). It is worth noting that the functions βDj

and βUj can be distinguished if and only if the difference between the skill levels ωj and

ωj+1 is bounded away from zero. This distinction proves to be useful in the following,

thereby illustrating the advantage of considering a discrete skill set.42

Lemma 6. For each j ∈ J−n, the functions βDj and βUj are continuously differentiable,

strictly increasing and satisfy 0 < βDj (x) < βUj (x) < χ for any x ∈ [0, χ). For each

j ∈ J−n, there is a number aj > 1 such that, if ωj+1/ωj ∈ (1, aj),

(a) βDj (x) < x if and only if x is above a unique number β
j
∈ (0, 1), and

(b) βUj (x) < x if and only if x is above a unique number β̄j ∈ (1, χ).

Lemma 6 provides conditions under which the relaxed problem’s solution, first, vio-

lates the downward IC constraint, second, satisfies both IC constraints or, third, violates

the upward IC constraint between the workers in skill groups j and j+1, depending only

on the social weights αj and αj+1. If the relative distance between skill levels ωj and ωj+1

41In Appendix B.4, I formally derive the term Bj and provide an approximation based on observable
objects. For ωj+1/ωj → 1, the term Bj vanishes.

42When the difference between ωj and ωj+1 vanishes, both functions converge to the single condition
that Jacquet et al. (2013) provide for the model with a twofold continuous type set.
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is sufficiently small, each of these three cases arises for some pair of social weights with

αj ≥ αj+1.43

Figure 1 illustrates the formal statements in Lemma 6 to make them more easily

accessible. The shaded area below the 45◦ line comprises all relevant combinations of the

social weights αj and αj+1 ≤ αj in set Aχ. Additionally, Figure 1 contains two ascending

graphs corresponding to the functions βDj and βUj in Lemma 6. Each graph crosses the

45◦ line exactly once, i.e., each function has a unique fixed point. The fixed point β
j

of

function βDj is located between 0 and the average weight 1. The fixed point β̄j of function

βUj is located between the average weight 1 and the upper threshold χ. By Lemma 6, the

functions βDj and βUj partition the relevant set of weights A into three regions.

αj+1

αj

45◦

βUj (αj)

βDj (αj)
β̄j

1

β
j

χ

χ

1 β̄jβ
j

I

II

III

Figure 1: Local IC constraints in the relaxed problem’s solution

For each pair (αj, αj+1) in region I, the relaxed problem’s solution violates the down-

ward IC constraint, i.e., higher-skilled workers consider their bundle (cαRj+1, y
αR
j+1) less at-

tractive than the bundle of the lower-skilled workers, (cj, yj). As can be seen from Figure

1, this constellation results if either both social weights are low (below β) or if the dif-

ference between the social weights αj and αj+1 is large. In the first case, the planner has

a strong desire to redistribute resources from the workers in skill groups j and j + 1 to

lower-skilled workers and/or unemployed agents. In the second case, the social planner

has a strong desire to redistribute resources from the workers in the higher skill group

j + 1 to the workers in the lower skill group j.

For each pair (αj, αj+1) in region II, the relaxed problem’s solution satisfies both local

IC constraints, i.e., the workers in each skill group prefer their own bundle to the one

designated for the other group. As can be seen from Figure 1, this constellation mainly

occurs if both social weights are close to 1. In this case, the social planner has only a

43If the relative distance between ωj and ωj+1 exceeds the bound aj , the solution of the relaxed
problem may satisfy both local IC constraints (or one of them) for all αj and αj+1 in (0, χ).
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limited desire to redistribute resources between both groups of workers and the average

agent in the economy.

For each pair (αj, αj+1) in region III, the relaxed problem’s solution violates the

upward IC constraint, i.e., lower-skilled workers consider the bundle (cαRj+1, y
αR
j+1) more

attractive than their own bundle. Figure 1 shows that this constellation occurs if both

social weights are above the fixed point β̄j > 1 and close enough to each other. Hence,

the social planner has a strong concern for redistribution from higher-skilled workers to

the workers in the skill groups j and j + 1, but only a limited desire to redistribute

resources between the workers in these two skill groups. For example, this condition is

met if the planner’s goal is to reduce the poverty gap, and both cj and cj+1 are below

the poverty line c̄ (see Section 3.4). By Lemma 5, labor supply in both skill groups is

upwards distorted at the extensive margin in this case.

Summarizing, Lemma 6 clarifies that the relaxed problem’s solution may as usual

conflict with downward incentive-compatibility. But it may also conflict with upward

incentive compatibility even if the social weight sequence is decreasing, which is true for

all weights in Aχ. In this case, upwards distortions at the intensive margin would be

optimal if the social planner only had to account for the IC constraints between skill

groups j and j+1. The main results in the following subsection provide conditions under

which the same is true in the optimal (second-best) allocation, i.e., when the full set of

local IC constraints is taken into account.

5.2 Main results

In the following, I characterize the labor supply distortions in the optimal allocation, i.e.,

the solution to the non-relaxed problem. I start by identifying a set of properties that

are satisfied for any strictly decreasing weight sequence in set Aχ.

Proposition 1. For each α ∈ Aχ, the optimal tax problem has a unique solution (cα, yα)

with δj ∈
[
δ, δ̄
)

for all j ∈ J . In this solution,

(i) the consumption level cα0 of the unemployed is strictly positive;

(ii) there is a number kα ∈ (0, n) such that optimal output is

a) upwards distorted at the extensive margin in skill group j if and only if j ≤ kα,

and

b) downwards distorted or undistorted at the intensive margin in skill group j if

j > kα;

(iii) optimal output in the highest skill group n is undistorted at the intensive margin

and downwards distorted at the extensive margin.
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Importantly, Proposition 1 clarifies the optimal income tax has the following common

properties for any decreasing sequence of social weights: First, the optimal unemployed

benefit is strictly positive. Second, upward distortions at the extensive margin can only

be optimal in the lowest skill groups with j ≤ kα, and upward distortions at the intensive

margin can only be optimal in a subset of these low-skill groups.44 Crucially, this implies

that upward distortions at the extensive margin are a necessary, but not sufficient condi-

tion for the optimality of upward distortions at the intensive margin. Third, Proposition

1 qualifies the classical no distortion at the top result. At the intensive margin, labor

supply by the most productive workers is always undistorte as in Mirrlees (1971). At the

extensive margin, in contrast, labor supply in the top skill group is always downwards

distorted.

Apart from these common properties, there are substantial differences between the

optimal allocations for alternative social weights in Aχ. In the following, I focus on the

social weights in specific subsets of Aχ.

Definition 1. For each k ∈ {2, . . . , n− 1}, set AUk contains all welfare weight sequences

α ∈ Aχ such that

(i) αj+1 ≥ βUj (αj) for all j ∈ {1, . . . , k − 1} with at least one strict inequality, and

(ii) αj+1 ≥ βDj (αj) for all j ∈ {k, . . . , n− 1}.

The construction of set AUk can be illustrated using Figure 1 above. In this figure, any

weight sequence α ∈ Aχ can be depicted as an ascending scatter plot consisting of n− 1

points, representing the weight-pairs (αj, αj+1) for all j ∈ J−n. For simplicity, assume

that the functions βDj and βUj were identical for all j ∈ J−n. Then, for any sequence of

social weights in AUk , the first k − 1 weight-pairs (α1, α2), . . . , (αk−1, αk) are located in

region III in the upper right part of Figure 1, while each of the remaining weight-pairs is

either located in region III or in the intermediate region II. The social weight sequence

hence represents a social planner with a pronounced concern for redistribution from highly

skilled workers to low-skill workers, but only a limited concern for redistribution among

the workers in the lowest skill groups.

For any k ∈ {2, . . . , n− 1} and any weight sequence in the set AUk , the labor supply

distortions in the optimal allocation can be characterized as follows.

Proposition 2. For any α ∈ AUk , optimal output yα is

• upwards distorted at the extensive margin in skill groups {1, . . . , k}, and

• upwards distorted at the intensive margin in skill groups {2, . . . , k}.
44It should be noted that this includes the case kα < 1, in which labor supply in all skill groups is

(weakly) downwards distorted at both margins.
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By Proposition 2, the optimal allocation involves upward distortions at both margins

for any social weights in the set AUk . In particular, labor supply in the k lowest skill

groups is upwards distorted at the extensive margin, and labor supply by all workers

with skill types ωj ∈ {ω2, . . . , ωk} is upwards distorted at the intensive margin. This

optimal allocation can only be decentralized by an income tax with negative marginal

taxes and negative participation taxes at low income levels. Proposition 2 hence provides

a sufficient condition for the optimality of an EITC, expressed in terms of social welfare

weights only. In Appendix B.1, I complement this result by two necessary conditions for

the optimality of an EITC.45

It is important to emphasize, however, that these social weights are endogenous ob-

jects that depend on the properties of the social objective and on the joint type distri-

bution K. Hence, the previous result is only relevant if there exist plausible objective

functions for which a weight sequence in the set AUk arises endogenously (for some k ∈ J).

In Section 3.4, I discuss two types of social objectives: classical welfare functions as con-

sidered by Mirrlees (1971), and the goal of poverty alleviation as considered by Kanbur

et al. (1994) and Saez & Stantcheva (2016). With respect to the former, I focus on wel-

fare functions that involve a transformation Ψ : R→ R and a type-dependent weighting

function γ : Ω × ∆ → R+ with standard properties. More precisely, a welfare function

(Ψ, γ) is said to be regular if (a) Ψ is strictly increasing and weakly concave and (b) γ is

weakly decreasing in ω and weakly increasing in δ.

Proposition 3. There are two numbers akU > 1, mk ≥ k + 1 and two vectors (φkj )
n
j=1,

(δkj )nj=1 with φkj+1 ≥ φkj for all j ∈ J−n, φkj ≷ 1 for j ≷ mk and δkj ∈
(
δ, δ̄
)

for all j ∈ J
such that, if

(a)
ωj+1

ωj
< akU for all j ∈ {1, . . . , k − 1},

(b) n ≥ mk and

(c)
∑n

j=1 fjGj(δ
k
j )φkj > 1,

there exist regular welfare functions for which ᾱ ∈ AUk .

Proposition 3 provides three conditions that jointly ensure the existence of well-

behaved welfare functions for which an Earned Income Tax Credit with negative marginal

taxes and negative participation taxes is optimal. Although these conditions appear com-

plicated, they can easily be interpreted.

Condition (a) requires the relative distance between each pair of adjacent skill types

(ωj, ωj+1) to be sufficiently small. It can hence be seen as a technical regularity condition

with respect to the skill set Ω.

45In particular, I identify social welfare weights for which the optimal marginal income tax is (a)
strictly positive everywhere below the top or (b) zero at all relevant income levels.
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The remaining two conditions ensure that there is a sufficiently large share of workers

with higher skill types than ωk. By condition (b), the cardinality n of the skill set Ω has

to be equal to (or above) some finite threshold mk ≥ k+ 1. Recall that the ratio ωj+1/ωj

is assumed to exceed 1 + ε for some ε > 0. Hence, condition (b) requires the relative

difference between the highest skill type ωn and skill type ωk to be large enough.

By condition (c), the population share of the agents with high skill types (ωmk or

higher) and low fixed cost types has to be sufficiently large. To see this, note that the

condition compares a weighted average over the increasing sequence φk = (φk1, φ
k
2, . . . , φ

k
n)

with 1. Each element φkj is weighted by the population share of the agents with skill type

ωj and fixed cost types below some threshold δkj (i.e., the agents in skill group j with

the largest preference for participating in the labor market). By construction, element

φkj is smaller than 1 for all skill groups below the threshold mk, and larger than 1 for

all higher skill groups. Hence, condition (c) is certainly satisfied if the population share∑n
j=mk fjGj(δ

k
j ) of highly productive agents is close to 1, and certainly violated if the

same population share is close to zero.

Proposition 8 in Appendix B.13 provides a similar result for the case where the social

objective is to reduce the poverty gap. Recall that this case can be formalized by spec-

ifying generalized welfare weights α̃ that are constant and equal to αp > 1 for all skill

groups with consumption below the poverty line c̄. Such welfare weights unambiguously

satisfy condition (i) in Definition 1 for all low-skill groups j, j + 1 with cj+1 ≤ c̄, as long

as the relative distance ωj+1/ωj is sufficiently small. If two conditions resembling (b)

and (c) are satisfied, there exists a monotonically decreasing sequence of welfare weights

associated to the remaining skill groups such that condition (ii) in Definition 1 is satisfied

as well. Hence, the optimal tax can also be given by an EITC if the social planner’s goal

is to reduce the poverty gap.

Implicitly, Proposition 3 also provides insights about the optimal location of the phase-

in endpoint, i.e., the highest income level for which the optimal marginal tax can still be

negative. To see this, fix the type distribution K. It can be shown that the threshold mk

is monotonically increasing in the level of the threshold skill group k, the highest skill

group with upwards distortions at the intensive margin. Thus, the higher income level y

is, the harder to satisfy are conditions (b) and (c), the optimality conditions for T ′(y) < 0.

In particular, there is a unique critical value k̄ ≤ n − 1 such that both conditions are

jointly satisfied if and only if k is below k̄. Put differently, Proposition 3 implies that the

optimal allocation can only involve upwards distortions for workers in skill group j ≤ k̄.46

From an applied perspective, results on the exact location of the critical skill ωk̄ and

on the income range with optimally negative marginal taxes would be of primary inter-

est. In principle, the conditions in Proposition 3 allow to determine ωk̄ precisely, given

46Hence, the endpoint of the EITC phase-in range is never located above the optimal income of workers
in threshold group k̄.
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appropriate information about the effort cost function and the joint type distribution.

Unfortunately, these objects cannot be observed directly. In the next sections and in Ap-

pendix B, however, I use three strategies to derive additional insights on the optimality

of upwards distortions at the intensive margin.

First, I calibrate the model to the US economy in Section 7, matching empirical

moments such as the income distribution and labor supply elasticities. For the calibrated

model, I am able to determine the critical skill level ωk̄ and the corresponding (phase-in)

income range numerically. Second, Lemma 25 in Appendix B.5 provides an upper bound

on the critical skill ωk̄, which is mainly expressed in terms of observable quantities such as

the joint type distribution and labor supply elasticities. Third, I use this upper bound to

show that the potential optimality of negative marginal taxes remains valid if the skill set

converges from a discrete set to an interval in Appendix B.6.47 These additional results

hence suggest that the main result of this paper – the potential optimality of negative

marginal taxes – is both robust and empirically relevant.

6 The tradeoff between intensive efficiency and ex-

tensive efficiency

In the following section, I explain the economic mechanism behind Propositions 1 to 3.

The optimal pattern of labor supply distortions is driven by, first, the standard trade-off

between equity and efficiency and, second, a previously neglected trade-off between labor

supply distortions at both margins. The section focuses on an auxiliary problem that

helps to isolate the latter trade-off and clarify its implications for the optimal allocation.48

In particular, consider the auxiliary problem to maximize efficiency subject to a re-

duced set of incentive compatibility constraints and to the constraint that some fixed

amount of resources is redistributed from the high-skill workers to the unemployed agents

and the low-skill workers. More precisely, the planner’s problem is to minimize the dead-

weight loss from labor supply distortions (5) over the set of feasible allocations, subject

to the constraint that the exogenous amount R > 0 of resources is transferred from the

set of workers with skill type ω3 and higher to the set of unemployed agents and workers

with skill types ω1 and ω2,

n∑
j=1

fj [1−Gj(δj)] c0 +
2∑
j=1

fjGj(δj)(cj − yj) =
n∑
j=3

fjGj(δj)(yj − cj) = R , (21)

47For the third point, I focus on an example with simple functional forms that allows to derive a limit
result on the optimal phase-in range.

48At the end of this section, I also comment on the differences between this auxiliary problem and the
optimal tax problem studied above.
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and to the incentive compatibility constraints between all agents with identical skills

(14), between all unemployed agents (15), and between the workers in the lowest two

skill groups,

c2 − h(y2, ω2) ≥ c1 − h(y1, ω2) , (22)

c1 − h(y1, ω1) ≥ c2 − h(y2, ω1) . (23)

I henceforth refer to this program as the problem of efficient redistribution, and denote

its solution by the vectors cE, yE and δE. The following lemma identifies the labor supply

distortions in this solution.

Lemma 7. Consider a redistribution amount R > 0 such that the solution (cE, yE) to

the efficient distribution problem exists and is interior.

(i) Output yE is upwards distorted at the extensive margin in skill groups 1 and 2.

(ii) There is a number aE > 1 such that, if ω2/ω1 ∈
(
1, aE

)
, output yE is upwards

distorted at the intensive margin in skill group 2.

By Lemma 7, redistributing resources in the most efficient way requires to distort

labor supply of low-skill workers upwards at both margins. This result holds whenever,

first, the distance between skill groups 1 and 2 is sufficiently small and, second, the

problem has an interior solution. The first qualification is related to the assumption of a

discrete skill set and will become clear below. The second qualification has to be made

because the problem may fail to have a well-behaved solution for high levels of R. In

particular, it may be impossible to collect the required amount of resources from the

high-skilled workers due to Laffer curve effects.49 Besides, the solution for high levels of

R may involve labor market participation by all low-skill agents, i.e., a boundary solution

with extreme upward distortions. As both problems have no relevance for the optimal

income tax problem and the trade-off between intensive efficiency and extensive efficiency,

I henceforth focus on cases with a well-behaved solution.

Before I proceed by explaining the economic intuition behind Lemma 7, it is worth

emphasizing the crucial role of the redistribution target for the optimality of upwards

distortions. If the social planner’s objective were to maximize efficiency subject to meeting

some exogenous revenue requirement B > 0 (replacing the redistribution target R > 0),

the optimal allocation would involve downwards distortions at both margins, in contrast

to Lemma 7. I provide a rigorous treatment of this alternative problem in Appendix

B.12.50

49The more resources are transferred from high-skill workers to unemployed agents, the more high-skill
workers become unemployed. Hence, the level of transfers is bounded from above.

50The trade-off between distortions at both margins arises in the efficient funding problem as well.
There, however, it explains why the social planner should set strictly positive marginal taxes even
though he has no concerns for redistribution from the rich to the poor.
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Upward distortions at the extensive margin. I start by explaining why efficient

redistribution yE gives rise to upward distortions at the extensive margin in both low-

skill groups, i.e., why the participation threshold δEj exceeds its first-best level δ∗(ωj) for

j ∈ {1, 2} (first part of Lemma 7). Assume first that the local IC constraints between the

workers in skill groups 1 and 2 are not binding and can hence be ignored. In this case,

the efficiency-maximizing allocation (cE, yE) does not involve distortions at the intensive

margin. Hence, the social planner only faces the problem to minimize the deadweight

loss from distortions at the extensive margin.

For each j ∈ {1, 2}, the optimal level of the participation threshold δEj is implicitly

defined by the first-order condition with respect to cj,

δEj − δ∗(ωj) = cEj − yEj − cE0 =
λE

1− λE
1

ηj(cE, yE)
> 0 , (24)

where λE is the Lagrange multiplier associated with the constraint that R resources have

to be transferred to the unemployed and the working poor. Equation (24) has two crucial

implications.

First, low-skill labor supply is upwards distorted at the extensive margin whenever

the redistribution constraint is binding, i.e., the amount R is strictly positive.51 Put

differently, efficient redistribution always involves larger transfers to the low-skilled work-

ers than to the unemployed. To provide the economic intuition behind this result,

consider an initial allocation in which labor supply in both low-skill groups is undis-

torted at both margins. This requires that, first, the output levels y1 and y2 satisfy

hy(y1, ω1) = hy(y2, ω2) = 1 and, second, identical transfers are provided to the low-skill

workers and the unemployed agents, c1 − y1 = c2 − y2 = c0 > 0. Feasibility requires that

these transfers are paid by the high-skill workers, i.e., yj − cj > 0 for all j ≥ 3. Hence,

labor supply in the high-skill groups must be downwards distorted at the extensive mar-

gin.

Assume now that the planner reduces the consumption level c0 of the unemployed

and increases the consumption levels c1 and c2 of the working poor in a budget-balancing

way, holding R constant. This has two effects on labor supply. First, some previously

unemployed agents in both low-skill groups start working, creating an upwards distortion

at the extensive margin. Initially, this only leads to a negligible (second-order) increase

in the deadweight loss, because labor supply in these groups was undistorted before.

Second, some previously unemployed agents in all high-skill groups start working due

to the reduction in c0. This response leads to a first-order reduction in the deadweight

loss, because labor supply was downwards distorted at the extensive margin before and

is less so now. Hence, providing larger transfers to the low-skilled workers than to the

unemployed increases extensive efficiency, although it leads to upward distortions at the

51Note that λE takes a value in the interval (0, 1) for any R > 0 such that (cE , yE) is interior.
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Figure 2: The trade-off between intensive-margin and extensive-margin distortions

extensive margin. Figure 2a illustrates this insight by depicting the solid red tax schedule

P1P2, under which the transfers to both types of low-skill workers are identical and larger

than the unemployment benefit c0. Figure 2b depicts the corresponding allocation with

output-consumption bundles P ′1 and P ′2.

Second, the first-order conditions with respect to c1 and c2 imply that the workers in

both low-skill groups receive different transfers. It is worth noting that, if the local IC

constraints between both low-skill groups are ignored, the problem of efficient redistri-

bution is structurally identical to the Ramsey problem of optimal commodity taxation.

Accordingly, equation (24) represents an inverse elasticity rule: The transfer to skill

group j ∈ {1, 2} has to be proportional to the inverse of the semi-elasticity ηj of partic-

ipation.52 Recall that the relative sizes of participation responses are pinned down by

Condition 1: η1 exceeds η2 in every implementable allocation (see Lemma 2). For any

R > 0, the efficiency-maximizing allocation must hence involve strictly larger transfers to

the higher-skilled workers than to the lower-skilled workers, cE2 −yE2 > cE1 −yE1 . In Figure

2a, the implied tax schedule is depicted by the dashed blue line Q1Q2, while Figure 2b

depicts the corresponding allocation that satisfies the inverse elasticity rule.

Additionally, the dashed arrows in Figure 2b illustrate the behavioral changes that are

induced by switching from the horizontal tax schedule P1P2 to the decreasing schedule

Q1Q2. First, as the transfers to workers in skill group 1 are reduced, some of these leave

the labor market and become unemployed. Second, as the transfers to workers in skill

group 2 are increased, some previously unemployed agents in skill group 2 start working.

The former response decreases the initial upwards distortions, while the latter response

increases upwards distortions. Because the former group responds more strongly at the

participation margin, however, the net effect is positive: the decreasing tax schedule

Q1Q2 induces less distortions at the extensive margin than the horizontal schedule P1P2.

52Note that the classical inverse elasticity rule is expressed in terms of standard elasticities instead of
semi-elasticities.
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Upward distortions at the intensive margin. By the previous paragraph, the so-

lution to the problem of efficient redistribution involves higher transfers to the workers

in skill group 2 than to the less skilled workers in group 1. This gives rise to the question

whether the allocation defined by equation (24) and the redistribution constraint (21)

violates the upward IC constraint.53 As Lemma 7 indicates, the answer to this question

is positive whenever the skill set is sufficiently “dense”, i.e., the distance between skill

levels ω1 and ω2 is sufficiently small.

Note that the formal derivation of this crucial result involves a non-standard compli-

cation. In particular, the violation of the upward IC constraint cannot be verified directly

for specific skill distances, as I have not imposed any functional form assumptions on the

effort cost function h and the joint type distribution K. The formal proof resolves this

problem by studying how the participation threshold δE2 is affected by variations in the

skill level ω2. In particular, I first investigate the optimal relation between δE1 and δE2

for the limit case where ω2 equals ω1. Second, I show that the allocation defined by (24)

violates the upward IC constraint after a marginal increase in ω2 whenever Condition 1

is satisfied.

The previous arguments have clarified that the upward IC constraint is binding in

(cE, yE) if the distance between ω1 and ω2 is small enough. Assume that this condition is

met. In this case, the social planner cannot set the transfers to both groups of low-skill

workers according to the inverse elasticity rule (24) and avoid distortions at the intensive

margin at the same time. Specifically, to satisfy the inverse elasticity rule, he has to relax

the upward IC constraint by distorting labor supply y2 upwards at the intensive margin.

In Figure 2a, this upwards distortion is illustrated by the increase in output from y2

(under the horizontal tax schedule P1P2) to y′2 (under the decreasing tax schedule Q1Q2).

Hence, the planner can only increase extensive efficiency if he reduces intensive efficiency

and vice versa. This trade-off constitutes a major difference between the problem of

efficient redistribution studied here and the standard Ramsey problem.

To minimize the overall deadweight loss (5), the planner has to implement the al-

location that equates the marginal deadweight losses from distortions at both margins,

representing the optimal compromise between intensive efficiency and extensive efficiency.

In Figure 2a, this optimal compromise is given by a weighted average between the tax

schedules P1P2 and Q1Q2. This compromising tax schedule is unambiguously decreasing,

but less so than the dashed blue schedule Q1Q2. Formally, the efficiency-maximizing

allocation has to satisfy

f2G2(δE2 )
[
hy(y

E
2 , ω2)− 1

]
hy(yE2 , ω1)− hy(yE2 , ω2)

= Λ
{
η1

[
δE1 − δ∗(ω1)

]
− η2

[
δE2 − yE2 + h(yE2 , ω2)

]}
> 0 , (25)

53By the previous arguments, the downward IC constraint is trivially satisfied for any R ≥ 0.

30



where Λ :=
[
f1f2G1(δE1 )G2(δE2 )

]
/
[
f1G1(δE1 ) + f2G2(δE2 )

]
.

For the interpretation of this condition, consider a marginal increase in y2, which

relaxes the upward IC constraint and hence allows to raise the difference between the

transfers to the workers in skill groups 1 and 2. The left-hand side of equation (25)

captures the induced increase in the intensive deadweight loss. In particular, the term

in the numerator states the difference between the marginal rate of substitution and the

marginal rate of transformation, while the term in the denominator quantifies the extent

to which the upward IC is relaxed.

The right-hand side of (25) captures the reduction in the extensive deadweight loss

that results from raising the difference between both transfers. In particular, the term in

brackets evaluates how much the allocation (cE, yE) deviates from the inverse elasticity

rule (24). The larger this term is, the more beneficial it is to distort y2 upwards in order

to increase the difference between both transfers.54

Summing up, the solution to the auxiliary problem of efficient redistribution involves

upward distortions in labor supply at both margins. Note that these insights extend to a

more general version of the efficient redistribution problem in which the planner wants to

redistribute resources to the unemployed and the workers with the lowest k ∈ (2, n) skill

types (from all higher-skilled workers), and takes into account the local IC constraints

between all workers with skill types ω1 to ωk. In this case, the efficiency-maximizing

allocation involves upward distortions at the extensive margin in the skill groups 1 to

k, and upward distortions at the intensive margin in the skill groups 2 to k. As shown

in Subsection 3.3, this allocation can be decentralized through an EITC -type income

tax schedule with negative participation taxes and negative marginal taxes for low-skill

workers.

Finally, it should be noted that the tradeoff between intensive and extensive efficiency

also provides the intuition for the potential optimality of an EITC in the optimal tax

problem (see Propositions 1 to 3). Of course, this tradeoff does not provide a complete

explanation for my results. In particular, the optimal tax problem differs in two crucial

aspects from the auxiliary problem studied above: First, the social planner has concerns

for redistribution among the poor, i.e., between the working poor and the unemployed.

Second, the planner has to take into account all local incentive-compatibility constraints,

instead of only those between low-skill workers. Intuitively, both aspects tend to increase

the optimal levels of marginal taxes and participation taxes. Propositions 2 and 3 and

their formal proofs in Appendix A show, however, that an EITC with negative marginal

taxes and negative participation taxes remains optimal for all regular welfare functions

that give rise to welfare sequences in any of the sets AU2 , AU3 , etc.55

54Note that equation (25) is also satisfied if the distance between both skill levels ω1 and ω2 is above
the threshold aE . In this case, allocation (cE , yE) satisfies the inverse elasticity rule and involves no
distortion at the intensive margin. Thus, both sides of the equation equal zero.

55For the first aspect, Lemmas 5 and 6 show that upwards distortions at both margins remain optimal
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7 Numerical simulations

The theoretical analysis above has shown that an EITC with negative marginal taxes

and negative participation taxes at the bottom of the income distribution can be opti-

mal, both in the case of regular welfare functions and the goal of poverty alleviation.

Given its generality, however, this analysis cannot provide clear insights on quantitative

aspects of this result, such as the income range on which an EITC should apply and the

optimal levels of negative marginal and participation taxes. To make progress on these

quantitative questions, I calibrate the model to match a set of empirical moments for the

US economy. This allows me to numerically simulate the optimal income tax for specific

sequences of welfare weights. I find that an optimal EITC can be quantitatively large

in terms of the income range as well as the levels of (negative) marginal and participa-

tion tax rates. A sensitivity analysis demonstrates that these conclusions are robust to

variations in the labor supply elasticities at both margins (see Appendix B.3).

7.1 Calibration

To calibrate the model to the US economy, I target empirical estimates of the labor

supply elasticities at both margins and the income distribution among workers in the US.

This requires to impose further assumptions on the individual preferences and the joint

type distribution of skills and fixed costs of working. I focus on childless singles in the

US in order to, first, ensure consistency with the theoretical model studied above, which

does not account for labor supply decisions within families, and second, relate to recent

proposals to expand the EITC for childless workers in the US. To simplify comparisons

with the previous literature, I closely follow the calibration by Jacquet et al. (2013).

First, a large literature estimates the elasticity of labor income with respect to the

retention rate 1−T ′(y) among workers. According to the survey by Saez et al. (2012), the

best available estimates are in the range between 0.12 and 0.4. To match these numbers,

I assume that the effort cost function is given by

h(yi, ωi) =
σ

1 + σ

(
yi

ωi

)1+1/σ

. (26)

For this functional form, the elasticity of income with respect to the retention rate is

equal to parameter σ for all individuals. I set σ equal to 0.3, slightly above the center of

the range of empirical estimates.56

if and only if the concerns for redistribution among the poor are sufficiently weak. For the second aspect,
Appendix B.11 explains why optimal labor supply in skill groups 2 to k remains upwards distorted for
all α ∈ AUk , even if the entire set of IC constraints is taken into account.

56 In Appendix B.3, I alternatively consider elasticities equal to 0.2 and 0.4, respectively. Besides,
recall that the quasi-linearity of the utility function (1) assumes away income effects in labor supply.
Because empirical studies tend to find small and often insignificant income effects, this seems to be an
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Second, the empirical literature consistently finds that participation elasticities are

decreasing over the skill distribution. Besides, participation responses differ considerably

across gender and family type (e.g., Juhn et al. 1991, 2002, Eissa & Hoynes (2004) and

Meghir & Phillips 2010).57 Recall that the participation elasticity in each skill group

depends on the skill-specific distribution of fixed cost. Unfortunately, there is no evidence

on the shape of these fixed cost distributions to the best of my knowledge. Given the

lack of better alternatives, I calibrate the conditional fixed cost distributions exactly as

in Jacquet et al. (2013).

In the first step, I specify the pattern of skill-specific participation elasticities and

employment shares to target. In particular, I assume that the participation elasticity

πj = Aj(δj)(cj − c0) and the employment rate Lj = Gj(δj) in skill group j are given by

πj = 0.5− 0.1

(
ωj − ω1

ωn − ω1

)1/3

and Lj = 0.7 + 0.1

(
ωj − ω1

ωn − ω1

)1/3

, (27)

respectively (under the current US tax system). Hence, skill-specific participation elas-

ticities decrease from 0.5 in the lowest skill group to 0.4 in the highest skill group.58 In

contrast, skill-specific employment rates increase from 0.7 in the lowest skill group to 0.8

in the highest skill group.59

In the second step, I assume that fixed costs are distributed according to a logistic

distribution of the form

Gj(δ) =
exp (−ψj + ρjδ)

1 + exp (−ψj + ρjδ)
. (28)

in each skill group j. For each j ∈ J , the parameters ψj and ρj are chosen to match the

levels of the participation elasticity πj and the employment share Lj specified by (27).

Note that the functional form of (28) ensures that the employment share is between 0

and 1 and that labor supply responds at the extensive margin in each skill group for any

admissible tax function T .

I calibrate the unconditional skill distribution to match the observed income distri-

bution in the US economy. Specifically, I estimate the latter distribution based on labor

income data for childless singles at ages 25 to 60 in the March 2016 CPS.60 Using the

OECD tax database, I approximate the US income tax in 2015 for childless singles by

acceptable simplification (see also Jacquet et al. 2013).
57Typical estimates are in the range between .3 and .6 for low-skilled men and around .05 for high-

skilled men. The literature mostly finds much higher participation elasticities for women, often even
above 1 (especially for lone mothers and women from disadvantaged backgrounds).

58In Appendix B.3, I also consider a case with lower participation elasticities (between 0.4 and 0.3),
and a case with more heterogeneous participation elasticities (between 0.6 and 0.3).

59In the calibrated model, the unconditional share of non-workers among childless singles is given by
23.4% under the current US tax system.

60In particular, I compute for each worker his average income for each week in employment according
to the CPS data. To calculate an agent’s skill, I then multiply the weekly income by 52 to get individually
optimal incomes conditional on working the entire year.
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a linear tax function with marginal tax rate 29.3% (OECD 2017).61 Based on this ap-

proximation, I can use the first-order condition of the individual optimization program

to back out the skill type of each CPS respondent with strictly positive labor income.

I consider a discrete skill set with n = 96 skill types, where the relative distance

between each pair of adjacent skill types is equal to ωj+1/ωj = 1.05. Compared to most

previous papers, this can be considered as a relatively fine or “dense” skill set. The

lowest and highest skill types receives wages of ω1 = $129 and ωn = $13, 300 per unit of

work, corresponding to yearly incomes of $500 and $206, 942, respectively.62 To obtain a

smooth distribution, I estimate the share of workers in each skill group j with a kernel

density approximation of the distribution of computed skill types. This procedure gives

the conditional skill distribution among employed workers under the 2015 US tax regime.

In the last step, I use the pattern of skill-specific employment rates imposed by (27)

to compute the unconditional skill distribution among all childless singles (workers and

unemployed).

Finally, I study the optimal income tax for specific redistributive preferences that

allow to illustrate the theoretical results of this paper and to assess their quantitative

relevance.63 More precisely, I construct two sequences αA and αB of welfare weights that

(i) are monotonically decreasing over the income distribution, (ii) are elements of the sets

AUkA and AUkB according to Definition 1 (where kA and kB are two numbers below n),

and (iii) satisfy the conditions in Proposition 3. Consequently, I already know that (ii)

the optimal tax involves in both cases some kind of EITC from Proposition 2, and that

(iii) both sequences can arise endogenously for regular welfare functions with standard

properties from Proposition 3. As Figure 4 in Appendix B.2 shows, both sequences give

rise to only weak (or no) concerns for redistribution among the poor, i.e., from low-income

earners to even-lower-income earners and to the unemployed. Importantly, both weight

sequences imply much weaker concerns for redistribution among the poor that the social

objectives considered by Saez (2002) and Jacquet et al. (2013).64

7.2 Simulation results

In the following, I provide the simulation results for the social weight sequences αA and

αB. These sequences are constructed to provide insights on two quantitative aspects

61The tax approximation is similar to the one in Jacquet et al. (2013), again. It takes into account cen-
tral and (average) state income taxes as well as employee social security contributions (OECD 2017, see
also http://www.oecd.org/tax/tax-policy/tax-database.htm). Note that this linear tax underestimates
the marginal tax wedge for high-income earners to some extent.

62In the March 2016 CPS, 98.6% single workers have a computed skill between ω1 and ωn.
63For this purpose, I set the exogenous revenue requirement to 0 as imposed by (3). Hence, I assume

that the government uses income taxation for redistributive purposes only.
64Both Saez (2002) and Jacquet et al. (2013) focus on cases where the marginal welfare weights are

decreasing and strictly convex, i.e., redistributive concerns among low-income earners are stronger than
among higher-income earners.
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of my theoretical results. First, which levels of negative marginal taxes and negative

participation taxes can be optimal, given well-behaved social preferences? Second, on

which income ranges can the optimal marginal taxes be negative, i.e., which phase-in

ranges can be optimal?

To answer the first question, I consider weight sequence αA, which associates identical

welfare weights to all workers with incomes in the phase-in range of the 2015 EITC for

childless workers, i.e., with incomes below $6.580.65 Sequence αA hence assumes away

concerns for redistribution among the working poor. By Proposition 2, this ensures the

optimality of negative marginal taxes at low incomes.

To answer the second question, I exploit that Proposition 3 provides sufficient condi-

tions for the optimality of negative marginal taxes under regular welfare functions with

standard properties. I construct weight sequence αB so to maximize the phase-in range,

i.e., the income range with negative marginal taxes. The resulting sequence implies weak

concerns for redistribution among a larger set of the low-skill workers, compared to se-

quence αA.66

Figure 3 illustrates the simulation results for weight sequences αA and αB by depicting

the optimal participation taxes T PA (y) = TA(y) − TA(0) and T PB (y) = TB(y) − TB(0) for

annual incomes below $50, 000. It proves helpful to compare the simulation results with

the properties of the US income tax system as a benchmark (red dotted line in Figure

3). In 2015, childless singles were eligible for the EITC if their earned income was below

$14, 820. The marginal income tax for this group was −7.65% for incomes below $6.580

(phase-in range) and +7.65% for incomes between $8.240 and $14.820 (phase-out range).

Workers with incomes between $6.580 and $8.240 received the maximum tax credit of

$503.67

First, the optimal income tax for weight sequence αA involves an EITC with negative

marginal taxes for all income levels up to $8, 485, and negative participation taxes for all

incomes up to $21, 970 (see solid blue line in Figure 3). In the calibrated model, 14.3%

of all childless singles benefit from the optimal EITC, and 18.1% of these recipients have

incomes in the phase-in range. The share of non-working agents is reduced substantially

to 12.9%.

65In particular, I set weight αAj = 1.05 for all skill groups j ≤ 41 (under laissez-faire, the income of
workers in skill group 41 is equal to $7.014). The weights of all higher skill groups are set to ensure that
αA is an element of AU41. For further details, see Appendix B.2.

66More precisely, Proposition 3 implicitly defines the highest skill group k̄ ∈ J for which upward
distortions at the intensive margin can be optimal with monotonic weights. Sequence αB is constructed
to be an element of the set AU

k̄
, thereby maximizing the set of skill groups with negative marginal taxes.

The exact construction of the sequences αA and αB is explained in Appendix B.2.
67Note that, in the phase-in region, the EITC rate exactly offsets the marginal social security contri-

butions (employee share). EITC rates and payments are larger for single parents and married couples
with children. Maag et al. (2012) show that, for these groups, effective marginal taxes are around −20%
in some US states and strictly positive in other states if transfer programs such as TANF and SNAP are
taken into account.
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Figure 3: Optimal participation tax functions T PA and T PB .

Under the optimal income tax, the maximum tax credit is given by $1, 383 and reached

at income level $8, 485. For comparison, the optimal unemployment benefit is given by

$3, 019. The ratio T PA (y)/y of optimal participation taxes to pre-tax incomes, which is

sometimes referred to as the participation tax rate, is around −60% for very low incomes

such as yA1 = $555.68 The ratio subsequently diminishes to levels around −16% at the

phase-in endpoint. As in any optimal tax model with a discrete skill set, marginal taxes

can be measured in two alternative ways. On the one hand, the average marginal tax in

the phase-in range is equal to −13, 2%. On the other hand, the implicit marginal taxes

are between −4.3% and −2% in the middle of the phase-in range, and between −1% and

0 close to both ends of the phase-in range.69 In the phase-out range, the average marginal

tax is given by 9.5%, while implicit marginal taxes are equal to zero. Hence, labor supply

in skill groups {2, . . . , 44} is upwards distorted at the extensive margin (substantially)

and at the intensive margin (somewhat less).70

Second, the optimal income tax for weight sequence αB involves negative marginal

taxes over a much larger income range, with the phase-in endpoint given by $15, 016 (see

dashed green line in Figure 3).71 The optimal participation taxes are even negative up

to the income level $32, 144. In the calibrated model, the recipients of the optimal EITC

68As visible from Figure 3, these large negative participation taxes suggest that the optimal income
tax may fall discontinuously at zero, in line with the results of Jacquet et al. (2013).

69The average marginal tax between incomes yk and yj is computed as [T (yk)− T (yj)] / (yk − yj),
while the implicit marginal tax at income yj is given by 1− hy(yj , ωj).

70In the optimal allocation, all local upward IC constraints between skill groups 1 and 44 are binding,
while all local IC constraints between skill groups 44 and 96 are non-binding (the associated Lagrange
parameters are zero).

71The highest skill group for which the optimal allocation can involve upward distortions at the in-
tensive margin is given by skill group k̄ = 53 (given the joint type distribution in the calibrated model).
Put differently, I find that regular welfare functions cannot give rise to weight sequences in set AUk for
any k > 53.
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account for about 27.7% of all childless singles, among whom 26% have incomes in the

phase-in region. The share of unemployed agents falls to 12, 4%.

Regarding the details of the optimal tax function, the maximum tax credit is given

by $1.717, while the optimal unemployment benefit is equal to $2, 281. The participation

tax rate is between −10% and −11.5% at all income levels in the phase-in range. The

average marginal tax rate in the phase-in range is equal to −11.5%, while the implicit

marginal tax is negative but close to zero at any income level in this range. Finally, the

average marginal tax in the phase-out range is given by 9, 7%, while implicit marginal

taxes are zero at all income levels above yB53.72 The optimal marginal and participation

tax rates are hence smaller in magnitudes for weight sequence αB than for sequence αA,

while the phase-in range, the EITC range and the maximum tax credit are larger.

Summing up, the numerical simulations show that the effects of the mechanism stud-

ied in this paper - the tradeoff between intensive efficiency and extensive efficiency - are

not only qualitatively, but also quantitatively important. When the concerns for redis-

tribution among the poor are weak (as implied by the weight sequences αA and αB),

the optimal EITC may cover a much larger income range and feature a much larger

maximum tax credit than the current EITC for childless workers in the US. Moreover,

negative marginal taxes and participation taxes can be more than twice as large (in ab-

solute terms) in the optimal scheme than in the current US scheme. Importantly, the

sensitivity analysis in Appendix B.3 demonstrates that these general conclusions do not

depend on the details of the calibration. In particular, they are neither affected by vari-

ations in the magnitude of intensive-margin responses, nor by variations in the profile

of participation elasticities across the skill distribution, as long as these remain in the

empirically plausible ranges.

Based on these results, two further conclusions can be drawn. First, the reported

results imply that one could find another monotonically decreasing sequence of welfare

weights for which the optimal income tax is a close approximation of the current EITC

for childless singles in the US. Put differently, if one would seek to back out the implicit

welfare weights of the US government in an inverse optimum exercise as in Jacobs et al.

(2017) or Lockwood (2017), the estimated welfare weights would have arguably reason-

able properties. Second, it even seems possible to rationalize the recent proposals to

strongly expand – to effectively double – the EITC for childless workers based on either

a well-behaved welfare function with standard properties or a poverty alleviation goal as

formalized by Saez & Stantcheva (2016), and without reference to behavioral anomalies

or paternalistic arguments (for example, see Executive Office 2014 and House Budget

Committee 2014).

72Again, all local upwards IC constraints between skill groups 1 and 53 are binding in the optimal
allocation, while all local IC constraints between skill groups 53 and 96 are non-binding.
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8 Conclusion

The paper has studied optimal income taxation in an empirically plausible model with

labor supply responses at both the intensive margin and the extensive margin. Using

a novel modeling strategy, it is the first paper to provide sufficient conditions for the

optimality of an Earned Income Tax Credit with negative marginal and participation

taxes at low income levels in such a model. In particular, the optimal income tax is given

by an EITC if society has strong concerns for redistribution from the rich to the poor, but

only weak concerns for redistribution from the poor to the very poor. As shown above,

this result is driven by a trade-off between labor supply distortions at the intensive margin

and at the extensive margin, which has not been discussed in the previous literature.

Importantly, the paper has shown that an EITC can be optimal although society

considers the unemployed more deserving than the working poor, and the working poor

more deserving than medium-income and high-income earners. The case for an EITC

is particularly strong if all agents with available incomes below the poverty line are

considered as equally deserving. It has repeatedly been argued that society might even

consider the working poor more deserving than the unemployed (for example, see Beaudry

et al. 2009 and Saez & Stantcheva 2016). As a result of the trade-off between distortions

at both margins, such redistributive preferences would not only strengthen the case for

negative participation taxes, but also for negative marginal taxes. Hence, the results of

this paper would even be reinforced.

Finally, while the paper has confirmed the conjecture of Saez (2002) that an EITC

can be optimal when labor supply responds at the intensive and extensive margins, it

has abstracted from several aspects that could further increase the desirability of such

in-work benefit schemes. For example, an EITC might have additional benefits if there

is learning on the job (Best & Kleven 2013) or if the agents fail to maximize their own

well-being due to present bias (Lockwood 2017). For future research, it seems worthwhile

to investigate the interaction of these non-standard aspects with the mechanism studied

in this paper.
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Appendix

A Proofs

Proof of Lemma 1

Proof. Using equation (1), incentive compatibility requires that, for all pairs of (ω, δ) and (ω′, δ′)

in Ω×∆,

c(ω, δ)− h [y(ω, δ), ω]− 1y(ω,δ)>0 δ ≥ c(ω′, δ′)− h
[
y(ω′, δ′), ω

]
− 1y(ω′,δ′)>0 δ .

To satisfy these constraints, first, all pairs of agents with types (ωj , δ) and (ωj , δ
′) who pro-

vide strictly positive output must receive the same gross (of fixed costs) utility c(ωj , δ) −
h [y(ωj , δ), ωj ] = zj . Second, all agents with types (ω, δ) and (ω′, δ′) who provide zero out-

put must receive the same consumption c(ω, δ) = c(ω′, δ′) = c0. Third, an allocation can

only be incentive-compatible if each agent with skill type ωj and fixed cost type below (above)

δj = zj − c0 provides positive output (zero output).

Second-best Pareto efficiency requires, moreover, that all agents with skill type ωj and

fixed cost type below δj receive the same bundle (cj , yj). By the strict convexity of effort cost

function h, there is a unique bundle (cj , yj) that minimizes the net transfer c − y, subject to

c − h(y, ωj) = zj and to the IC constraints along the skill dimension, zk ≥ c − h(y, ωk), for

all k 6= j. Assume there is an initial allocation in which some agent with type (ωj , δ) receives

bundle (c′, y′) 6= (cj , yj) with y′ > 0. Changing his allocation to (cj , yj) allows to save resources

without changing his utility level, and to redistribute these resources lump-sum to all agents in

the economy. Hence, the initial allocation with (c′, y′) 6= (cj , yj) was not Pareto efficient.

Proof of Lemma 2

Proof. In every implementable allocation, the downward IC constraint between the workers

with skill types ωj and ωj+1 is satisfied, i.e.,

cj+1 − h (yj+1, ωj+1) ≥ cj − h (yj , ωj+1)

⇔ δj+1 − δj ≥ h(yj , ωj)− h(yj , ωj+1) . (29)

By hω(y, ω) < 0, this implies that δj+1 > δj . Parts (i) and (ii) of Condition 1 ensure that

ηj(c, y) =
gj(δj)
Gj(δj)

>
gj(δj+1)
Gj(δj+1) ≥

gj+1(δj+1)
Gj+1(δj+1) = ηj+1(c, y).

Proof of Lemma 3

Proof. Fix some implementable allocation (c, y) with skill-specific participation thresholds δj =

cj−h(yj , ωj)−c0 and δj−1 = cj+1−h(yj+1, ωj+1)−c0, respectively. Assume now that the social

planner provides an additional, uniform transfer c′ ≥ 0 to the workers in both skill groups.

42



Then, the ratio of relative participation responses is given by

η̂j,j+1(δj , δj+1, c
′) =

gj(δj + c′)

Gj(δj + c′)

Gj+1(δj+1 + c′)

gj+1(δj+1 + c′)
.

The partial derivative of η̂j,j+1(δj , δj+1, c
′) with respect to c′ is given by

∂η̂j,j+1

∂c′
=

[
∂ηj
∂δj

1

ηj
− ∂ηj+1

∂δj+1
1

ηj+1

]
ηj
ηj+1

=
[(
aj(δj + c′)−Aj(δj + c′)

)
−
(
aj+1(δj+1 + c′)−Aj+1(δj+1 + c′)

)]
η̂j,j+1 .

Setting c′ = 0, the elasticity of η̂j,j+1(δj , δj+1, c
′) with respect to c′ follows as

εη̂,c′ =
∂η̂j,j+1

∂c′
1

η̂j,j+1
= aj(δj)− aj+1(δj+1)−Aj(δj) +Aj+1(δj+1) .

Under Condition 2, the last expression is bounded from below by − [Aj(δj)−Aj+1(δj+1)] =

ηj+1 − ηj < 0 and from above by Aj(δj)−Aj+1(δj+1) = ηj − ηj+1 > 0.

Proof of Lemma 4

Proof. For part i, consider some implementable allocation (c, y) and some working agent i with

ωi = ωj and δi < δj . Assume as usual that the tax function T is linear at income level y∗T (ωj),

which is defined by hy(y
∗
T (ωj), ωj) = 1 − T ′ (y∗T (ωj)). For this agent, the elasticity of income

yT (ωi, δi) with respect to the retention rate r = 1− T ′ (y∗T (ωj)) is given by

εy,1−T ′ =
∂y∗T (ωj)

∂r

r

y∗T (ωj)
=

1

hyy(y∗T (ωj), ωj)

hy(y
∗
T (ωj), ωj)

y∗T (ωj)
,

which is weakly below some µ1 ∈ (0,∞) for all ωj ∈ Ω and r > 0 by Condition 3 (i).

For part ii, consider the same allocation (c, y) and agent i. The elasticity of income with

respect to his skill level ωj is given by

εy,ω =
∂y∗T (ωj)

∂ω

ω

y∗T (ωj)
=
hyω(y∗T (ωj), ωj)

hyy(y∗T (ωj), ωj)

ωj
y∗T (ωj)

,

which is weakly above some µ2 ∈ (0,∞) for all ωj ∈ Ω and r > 0 by Condition 3 (ii).

Proof of Lemma 5

The proof of Lemma 5 consists of three steps. I start with two preliminary Lemmas.

Lemma 8. Consider the relaxed problem formally defined in section 5.1. For any α ∈ A such

that an solution (cαR, yαR) with δαRj ∈
(
δ, δ̄
)

for all j ∈ J exists, it satisfies conditions (16) and

(17).

Proof. Assume that the relaxed problem has a solution for social weights α. First, (cαR, yαR)

must be Pareto-efficient in the set of allocations that are feasible and satisfy the IC constraints
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(14) and (15). Second, the statements in 1 must be true for (cαR, yαR) because its proof only

uses the IC constraints (14) and (15). Consequently, the Lagrangian of the relaxed problem can

be written as

L =
n∑
j=1

fj

(∫ δj

δ
gj(δ)γ(ω, δ)Ψ [cj − h(yj , ωj)− δ] dδ +

∫ δ̄

δj

gj(δ)γ(ω, δ)Ψ(c0) dδ
)

+λ

 n∑
j=1

fjGj(δj)(yj − cj + c0)− c0

 ,
where δj = cj − h(yj , ωj) − c0 and λ is the Lagrange parameter associated with the feasibility

condition. Replacing the average weights ᾱj and ᾱ0 as defined in (9) and (10) by the exogenous

numbers αj and α0, the first-order conditions of this problem are given by

Lcj =fj
[
Gj(δ

αR
j ) (αj − λ) + λgj(δ

αR
j )(yαRj − cαRj + cαR0 )

] !
= 0

Lyj =fj

[
−hy(yαRj , ωj)

(
Gj(δ

αR
j )αj + λgj(δ

αR
j )(yαRj − cαRj + cαR0 )

)
+ λGj(δ

αR
j )
]

!
= 0

Lc0 =
n∑
j=1

fj

[(
1−Gj(δαRj )

)
α0 + λGj(δ

αR
j )− λgj(δαRj )(yαRj − cαRj + cαR0 )− 1

]
!

= 0

Equation (16) follows from combining the first-order conditions with respect to cj and yj .

Combining the FOCs with respect to cj for all j ∈ J and c0 gives

λ =

n∑
j=1

fj

[
Gj(δ

αR
j )αj +

(
1−Gj(δαRj )

)
α0

]
= αM = 1,

where the average weight αM is normalized to 1 for all α ∈ A. Using λ = 1 and cj = δj +

h(yj , ωj) + c0, the FOC with respect to cj can be rewritten as

δαRj − yαRj + h(yαRj , ωj) =
Gj(δ

αR
j )

gj(δαRj )
(αj − 1). (30)

As Aj(δ) =
gj(δ)
Gj(δ)

and δ∗(ωj) = maxy>0 {y − h(y, ωj)} = yαRj − h(yαRj , ωj), this is identical to

equation (17).

Lemma 9. There is a number χ ∈ (1, 2] such that, if αj < χ for all j ∈ J , the relaxed optimal

tax problem has a unique solution with δαRj ∈
(
δ, δ̄
)

for all j ∈ J .

Proof. As shown above, the FOC with respect to cj is identical to

kj(δ
αR
j , αj) = Gj(δ

αR
j )(αj − 1) + gj(δ

αR
j )(δ∗(ωj)− δαRj ) = 0 , (31)

for every j ∈ J . Hence, the relaxed problem has a unique interior extremum for α if and only

if kj(δ, αj) has a unique root in δ with δ ∈
(
δ, δ̄
)
. First, kj is continuous in αj and δ for all

δ ∈
(
δ, δ̄
)
. Second, kj(δ, αj) > 0 for any αj ≥ 0 because δ∗(ωj) ≥ δ∗(ω1) > δ for all j ∈ J by

(2) and the properties of h. Third, the derivative of kj with respect to cj (or its first argument)

44



is given by

kjδ(δ, αj) = gj(δ) (αj − 2) + g′j(δ)(δ
∗(ωj)− δ) .

If k has a root at δ′, this derivative has to be equal to

kjδ(δ
′, αj) = Gj(δ

′)
[
Aj(δ

′) (αj − 2)− aj(δ′)(αj − 1)
]
,

where Aj(δ) =
gj(δ)
Gj(δ)

and aj(δ) =
g′j(δ)

gj(δ)
. Part (i) of Condition 1 ensures that Aj(δ) > aj(δ) for

all δ ∈ ∆ and all j ∈ J . This implies that kjδ(αj , δ
′) is negative if

αj < χ
j
(δ′) := 1 +

Aj(δ
′)

Aj(δ′)− aj(δ′)
,

and that χ
j
(δ′) > 1 for all δ′ ∈ ∆ and all j ∈ J . Define χj as the minimum of χ

j
(δ′) over

δ′ ∈
(
δ, δ̄

]
. By assumption, gj(δ) is larger than some number g > 0 for all δ ∈ ∆ and g′j(δ) ≤ 0

for some δ ∈ ∆. By the first property, χj is bounded away from 1 for all j ∈ J . By the second

property, χj ≤ 2 for all j ∈ J . Consequently, kj(δ, αj) has at most one root in δ if αj < χj . If

this root exists, it constitutes a maximum because kjδ(δ, αj) < 0.

The existence of a root is ensured if, additionally, kj(δ̄, αj) < 0, which is ensured for αj <

χ′j := 1 + gj(δ̄)
(
δ̄ − δ∗(ωj)

)
. Note that χ′j > 1 for all j ∈ J by (2). Let χ be given by the

minimum of χj and χ′j over all j ∈ J . By the construction of χ, the relaxed problem has a

unique interior extremum for α if αj < χ for all j ∈ J .

Lemma 5 follows as a corollary from the Lemmas 8 and 9, using the definitions of labor

supply distortions at both margins provided in Section 3.2. In particular, equation (16) implies

that labor supply is undistorted at the intensive margin in all skill groups. Equation (17) implies

that labor supply is downwards (upwards) distorted at the extensive margin in skill group j ∈ J
if and only if αj is below (above) 1.

Proof of Lemma 6

Lemma 6 is proven through Lemmas 10 to 15.

Lemma 10. For every j ∈ J and every α ∈ Aχ, δαRj is strictly increasing in αj.

Proof. Threshold δαRj is implicitly defined by condition (17) in Lemma 8. Using the implicit

function theorem, its derivative with respect to αj is given by

dδαRj
dαj

=
Aj(δ

αR
j )−1

1 + (1− αj)
(

1− aj(δαRj )

Aj(δαRj )

) =
1

(2− αj)Aj(δαRj )− (1− αj)aj(δαRj )
, (32)

where the numerator equals −kδ(αj , δαRj )/Gj(δ̂
αR
j ) > 0 (see proof of Lemma 9). Hence, the

derivative is strictly positive for all αj < χ.

Lemma 11. For any skill group j ∈ J−n, if αj = αj+1 = α′,
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(i) the difference δαRj+1 − δαRj is strictly increasing in α′ for all α′ ∈ (0, χ) such that the

downward IC constraint (29) between skill groups j and j + 1 is satisfied;

(ii) (cαR, yαR) satisfies the downward IC constraint (29) between skill groups j and j + 1 for

all α′ ∈ [1, χ);

(iii) (cαR, yαR) satisfies the upward IC constraint between skill groups j and j + 1,

δj+1 − δj ≤ h(yj+1, ωj)− h(yj+1, ωj+1) , (33)

for all α′ ∈ [0, 1].

Proof. (i) Using (32), the derivative of δαRj+1 − δαRj with respect to αj = αj+1 = α′ is strictly

positive if

(2− α′)
[
Aj(δ

αR
j )−Aj+1(δαRj+1)

]
> (1− α′)

[
aj(δ

αR
j )− aj+1(δαRj+1)

]
. (34)

In all allocations that satisfy the downward IC constraint, δαRj+1 > δαRj . By Conditions 1

and 2, we hence have Aj(δ
αR
j ) − Aj+1(δαRj+1) > 0 and aj(δ

αR
j ) − aj+1(δαRj+1) ≥ 0. Because

χ ∈ (1, 2], this directly implies that inequality (34) is satisfied for any α′ ∈ [1, χ). Moreover,

Condition 2 ensures that aj(δ
αR
j ) − aj+1(δαRj+1) ≤ 2

[
Aj(δ

αR
j )− Aj+1(δαRj+1)

]
. Hence, in-

equality (34) is also satisfied for the alternative case α′ ∈ (0, 1), where (2−α′)/(1−α′) > 2.

(ii) For αj = 1, δαRk = δ∗(ωk) for k ∈ {j, j + 1}. Inserting these into the downward IC

constrait (29) and rearranging terms gives

δ∗(ωj+1) = yαRj+1 − h
(
yαRj+1, ωj+1

)
≥ yαRj − h

(
yαRj , ωj+1

)
,

which holds with strict inequality by the single-crossing property. The left-hand side of

(29) is given by δαRj+1−δαRj , which is strictly increasing in α′ by part (i), while the right-hand

side is constant. Hence, the downward IC constraint is satisfied for all α′ ≥ 1.

(iii) For αj = 1, inserting δαRk = δ∗(ωk) for k ∈ {j, j + 1} into the upward IC constraint (33)

gives yαRj+1 − h
(
yαRj+1, ωj

)
≤ δ∗(ωj) = maxy>0 {y − h(y, ωj)}, which is again satisfied with

strict inequality. As the left-hand side of (33) is strictly increasing in α′, the upward IC

is satisfied for all α′ < 1 such that the downward IC is satisfied. As the downward and

upward IC constraints cannot be violated at the same time, the upward IC constrained is

also satisfied for all other α′ < 1.

Lemma 12. Consider the downward IC constraint (29) between the workers with skill types

ωj and ωj+1 = ajωj for some j ∈ J−n. Define a0
j as the supremum of the set of real numbers

a′ > 1 such that, given αj = αj+1 = 0, (cαR, yαR) violates the downward IC constraint for all

aj ∈ (1, a′).

(i) If Condition 1 is satisfied, a0
j > 1 exists.
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(ii) Let αj = αj+1 = α′. For each aj ∈
(

1, a0
j

)
, there exists a unique number β

j
∈ (0, 1) such

that (cα, yα) violates the downward IC constraint (20) if and only if α′ < β
j
.

Proof. (i) In the limit case aj = 1, the downward IC constraint (29) simplifies to δαRj+1−δαRj ≥
0. By (17), δαRk is implicitly defined by 1

Ak(δαRk )
+ δαRk = δ∗(ωk) for α′ = 0 and any k ∈ J .

For aj = 1, we have δ∗(ωj+1) = δ∗(ωj). By Condition 1 (ii), Aj(δ) ≥ Aj+1(δ). Hence, there

are two possible cases. First, if Aj(δ
αR
j ) > Aj+1(δαRj ), we have δαRj+1 < δαRj . Hence, the

downward IC constraint is violated for α′ = 0 and a = 1. Second, if Aj(δ
αR
j ) = Aj+1(δαRj ),

we have δαRj+1 = δαRj . Hence, the downward IC constraint is satisfied with equality for

α′ = 0 and a = 1.

To consider the general case aj > 1, I compare the derivatives of both sides of (29) with

respect to aj at aj = 1. The derivative of the left-hand side is given by

dδ∗(ωj+1)
daj

2− aj+1(δαRj+1)

Aj+1(δαRj+1)

=

d[yαRj+1−h(yαRj+1,ωjaj)]
daj

2− aj+1(δαRj+1)

Aj+1(δαRj+1)

= −
ωjhω

(
yαRj+1, ωja

)
2− aj+1(δαRj+1)

Aj+1(δαRj+1)

> 0 ,

where the term in the denominator is strictly larger than 1 because aj+1(δ) < Aj+1(δ)

for all δ ∈ ∆ by Condition 1 (i). The derivative of the right-hand side is given by

−ωjhω
(
yαRj , ωja

)
> 0, which is strictly larger than the derivative of the left-hand side.

Hence, the downward IC constraint is unambiguously violated for αj = αj+1 = 0 and all

aj between 1 and some number a′ > 1. The supremum a0
j is hence well-defined, and may

either be given by a finite number or by ∞.

(ii) For any aj ∈
(

1, a0
j

)
, the right-hand side of (29) is independent of α′. The left-hand side

δαRj+1 − δαRj is small enough to violate the downward IC constraint for α′ = 0 by part (i),

and large enough to satisfy this constraint with strict inequality for α′ = 1 by Lemma 11

(ii). By Lemma 11 (i), δαRj+1 − δαRj is strictly increasing in α′ for all levels of α′ such that

(29) is satisfied. Consequently, there exists a unique threshold β
j
∈ (0, 1) such that the

downward IC constraint is violated for all α′ ∈
[
0, β

j

)
and satisfied for all α′ ∈

[
β
j
, χ
)

.

Lemma 13. Consider the upward IC constraint (18) between the workers with skill types ωj

and ωj+1 = ajωj for some j ∈ J−n. Define auj (γ) as the supremum of the set of real numbers

a′ > 1 such that, given αj = αj+1 = γ > 1, (cαR, yαR) violates the upward IC constraint for all

aj ∈ (1, a′).

(i) If Condition 1 is satisfied, auj (γ) exists for all γ ∈ (1, χ).

(ii) Let αj = αj+1 = α′. For each γ ∈ (1, χ) and each a ∈
(

1, auj (γ)
)

, there exists a unique

number β̄j ∈ (1, γ) such that (cα, yα) violates the upward IC constraint if and only if

α′ ∈
(
β̄j , χ

)
.

Proof. (i) Fix a number γ ∈ (1, χ). In the limit case aj = 1, the upward IC constraint

(33) simplifies to δαRj+1 − δαRj ≤ 0. For αj = αj+1 = γ > 1, δαRk is implicitly defined by
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1−γ
Ak(δαRk )

+ δαRk = δ∗(ωk) for k ∈ {j, j + 1}. For a = 1, δ∗(ωj) = δ∗(ωj+1). By Condition 1

(ii), Aj(δ) ≥ Aj+1(δ) for all δ ∈ ∆. Again, there are two possible cases. First, if Aj(δ
αR
j ) >

Aj+1(δαRj ), we have δαRj+1 > δαRj so that (33) is violated. Second, if Aj(δ
αR
j ) = Aj+1(δαRj ),

we have δαRj+1 = δαRj so that (33) is satisfied with strict equality.

To consider the general case aj > 1, I again compare the derivatives of both sides of (33)

in aj , given a fixed γ. The derivative of the left-hand side is given by

−ωjhω
(
yαRj+1, ajωj

)
1− (γ − 1)

(
1− aj+1(δαRj+1)

Aj+1(δαRj+1)

) > 0 ,

where the term in the denominator is strictly positive for any γ < χ and strictly smaller

than 1 by Condition 1 (i) for all γ > 1. The derivative of the right-hand side is given by

−ωjhω
(
yαRj+1, ajωj

)
+
[
h(yαRj+1, ωj)− h(yαRj+1, ajωj)

] dyαRj+1

daj
> 0 .

At aj = 1, the term in squared brackets equals zero. Hence, the derivative of the left-hand

side is strictly larger than the derivative of the right-hand side of (33). Thus, the upward

CI constraint is violated for αj = αj+1 = γ > 1 and all aj between 1 and some number

a′ > 1. The supremum auj (γ) is hence well-defined, and may either be given by some finite

number above 1 or by ∞.

(ii) Fix any γ ∈ (1, χ). If aj ∈
(

1, auj (γ)
)

, the difference δαRj+1 − δαRj is large enough to violate

(33) for α′ = γ and small enough to satisfy (33) for α′ = 1. Moreover, δαRj+1 − δαRj is

strictly increasing in α′ for all α′ > 1 by Lemma 11 (iii) and (i). Consequently, there

exists a unique threshold β̄j ∈ (1, γ) such that the downward IC constraint is violated for

all α′ ∈
(
β̄j , χ

)
, and satisfied for all α′ ∈

[
0, β̄j

]
.

Lemma 14. Consider any j ∈ J−n. If aj < a0
j , there is a continuously differentiable and

strictly increasing function βDj : [0, χ] → (0, χ) such that (cαR, yαR) satisfies the downward IC

constraint if and only if αj+1 ≥ βDj (αj). Function βDj has a unique fixed point at β
j
∈ (0, 1),

where
dβDj (β

j
)

dαj
< 1.

Proof. Consider some j ∈ J−n and some aj ∈
(

1, a0
j

)
, where a0

j is defined in Lemma 12 (i).

Hence, there is a number β
j
∈ (0, 1) such that (cαR, yαR) satisfies the downward IC constraint

(29) if αj = αj+1 ≥ βj , and violates (29) if αj = αj+1 < β
j
. Recall that δαRk is strictly increasing

in αk for each k ∈ J and each αk ∈ [0, χ) by Lemma 10 and that changes in αj and αj+1 only

affect the left-hand side of the downward IC (29).

First, fix some αj = x ∈
(
β
j
, χ
)

. For αj+1 = β
j
, the difference δαRj+1 − δαRj is smaller than

for αj = αj+1 = β
j
, and (29) is violated. For αj+1 = αj = x, in contrast, (29) is satisfied by

Lemma 12. As δαRj+1 is increasing in αj+1, there is a unique number βD1 (x) ∈
(
β, x

)
such that

(29) is satisfied for all αj+1 ≥ βDj (x), and violated for all αj+1 < βDj (x).
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Second, fix some αj = x ∈
[
0, , β

j

)
. For αj+1 = β, the difference δαRj+1 − δαRj is larger than

for αj = αj+1 = β
j

so that (29) is satisfied. For αj+1 = x, in contrast, (29) is violated by

Lemma 12. By the monotonicity of βαRj+1 in αj+1, there is a unique number βDj (x) ∈
(
x, β

j

)
such that (29) is satisfied if αj+1 ≥ βDj (x), and violated if αj+1 < βDj (x). This also implies that

Hence, βD1 (x) ∈ (0, χ) for all x ∈ [0, χ).

To prove that βDj is continuously differentiable and strictly increasing, note that βDj (αj) is

implicitly defined by

δαRj+1

(
βDj (αj)

)
− δαRj (αj) = h

(
yαRj , ωj

)
− h

(
yαRj , ωj+1

)
. (35)

The right-hand side of this equation is constant in αj and αj+1. The left-hand side is contin-

uously differentiable and monotonic in both weights as long as these are below χ. Hence, βDj

is continuously differentiable in αj . Using the implicit function theorem, the derivative is given

by

dβDj (αj)

dαj
=

dδαRj (αj)

dαj

dδαRj+1(βDj (αj))

dαj+1

> 0 , (36)

where the numerator and the denominator are strictly positive by Lemma 10.

Finally, we know from Lemma 12 that βDj has a unique fixed point at β
j
< 1 whenever

aj ∈
(

1, a0
j

)
. As the downward IC constraint is satisfied at this fixed point, Lemma 11 (i)

ensures that
dδαRj (β

j
)

dαj
<

dδαRj+1(β)

dαj+1
. Hence,

dβDj (β
j
)

dαj
< 1.

Lemma 15. Consider any j ∈ J−n. If aj < auj (γ) for some γ ∈ (1, χ), there is a continuously

differentiable and strictly increasing function βUj : [0, χ)→ (0, χn) such that (cαR, yαR) violates

the upward IC constraint if and only if αj+1 > βUj (αj). Function βUj has a unique fixed point

at β̄j ∈ (1, χ), where
dβUj (β

j
)

dαj
< 1.

Proof. The proof of Lemma 15 follows the same steps as the proof of Lemma 14. Consider

some j ∈ J−n and some aj between 1 and the treshold auj (γ) for some γ ∈ (1, χ), as defined in

Lemma 13 (i). Hence, there is a number β̄j ∈ (1, γ) such that (cαR, yαR) satisfies the upward

IC constraint (33) if αj = αj+1 ≥ β̄j , and violates (33) if αj = αj+1 < β̄j .

First, fix some αj = x ∈
(
β̄j , χ

)
. The upward IC constraint is satisfied for αj+1 = β̄j , and

violated αj+1 = x by Lemma 13. By the monotonicity of δαRj+1 in αj+1, there is a unique number

βU1 (x) ∈
(
β̄j , x

)
such that (33) is satisfied if αj+1 ≤ βUj (x), and violated if αj+1 > βUj (x).

Second, fix some αj = x ∈
[
0, β̄j

)
. The upward IC constraint is violated for αj+1 = β̄j ,

and satisfied for αj+1 = x by Lemma 13. Hence, there is a unique number βUj (x) ∈
(
x, β̄j

)
such that (33) is satisfied if αj+1 ≤ βUj (x) and violated if αj+1 > βUj (x). Hence, we also have

βUj (x) ∈ (0, χ) for all x ∈ [0, χ).

For each αj ∈ [0, χ), βUj (αj) is implicitly defined by

δαRj+1

(
βUj (αj)

)
− δαRj (αj) = h

(
yαRj+1, ωj

)
− h

(
yαRj+1, ωj+1

)
, (37)

where the left-hand side is continuously differentiable and monotonic in αj and αj+1, and the

49



right-hand side is constant in both social weights. Using the implicit function theorem, the

derivative of βUj with respect to αj is given by

dβUj (αj)

dαj
=

dδαRj (αj)

dαj

dδαRj+1(βUj (αj))

dαj+1

> 0 , (38)

where the numerator and the denominator are strictly positive by Lemma 10. This derivative

is continuous and strictly positive for all α1 ∈ [0, χ).

Finally, Lemma 13 implies that βUj has a unique fixed point at β̄j ∈ (1, χ) whenever aj ∈(
1, aUj (γ)

)
for some γ ∈ (1, χ). At this fixed point, the downward IC constraint is satisfied and

dδαRj (β̄j)

dαj
<

dδαRj+1(β̄j)

dαj+1
by Lemma 11 (i). Consequently,

dβUj (β̄j)

dαj
< 1.

Finally, this allows us to prove Lemma 6.

Proof. Define aUsj := sup
{
aUj (γ) |γ ∈ (1, χ)

}
. For all aj < min

{
a0
j , a

Us
j

}
, Lemmas 14 and 15

directly ensure the existence of two functions βDj and βUj with the properties stated in Lemma

6.

It only remains to prove that βUj (αj) > βDj (αj) for all αj ∈ [0, χ). Note that h
(
yαRj+1, ωj

)
−

h
(
yαRj+1, ωj+1

)
> h

(
yαRj , ωj

)
− h

(
yαRj , ωj+1

)
by the properties of the effort cost function h.

Hence, equations (35) and (37) imply that δαRj+1

(
βUj (x)

)
> δαRj+1

(
βDj (x)

)
. Because δαRj+1 is

strictly increasing in αj+1 by Lemma 10, we have δUj (x) > δDj (x) for all x ∈ [0, χ).

Proof of Proposition 1

I prove Proposition 1 through Lemmas 16 to 21, which identify properties of the optimal allo-

cation (cα, yα) for different sets of binding IC constraints along the skill dimension. To refer to

these different constellations, I will henceforth say that two skill groups j and k are downwards-

linked (upwards-linked) if all downward (upward) IC constraints between the pairs (j, j + 1),

. . . , (k − 1, k) are binding.

Lemma 16. For each j ∈ J , output yαj and participation threshold δαj satisfy the conditions

δαj = yαj − h(yαj , ωj) +
αj − 1

Aj(δαj )
+
νDj−1 − νDj − νUj−1 + νUj

fjgj(δαj )
, (39)

1− hy(yj , ωj) =
hy(yj , ωj)− hy(yj , ωj+1)

fjGj(δαj )
νDj −

hy(yj , ωj−1)− hy(yj , ωj)
fjGj(δαj )

νUj−1 , (40)

where νDk and νUk denote the Lagrange multipliers associated with the downward IC (20) and

the upward IC (18), respectively, between the workers with skill types ωk and ωk+1.

Proof. The Lagrangian of the optimal tax problem is given by

L =

n∑
j=1

fj

(∫ δj

δ
gj(δ)γ(ω, δ)Ψ [cj − h(yj , ωj)− δ] dδ +

∫ δ̄

δj

gj(δ)γ(ω, δ)Ψ(c0) dδ
)
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+λ

 n∑
j=1

fjGj(δj)(yj − cj + c0)− c0


+

n−1∑
j=1

νDj [cj+1 − h(yj+1, ωj+1)− cj + h(yj , ωj+1)]

+
n−1∑
j=1

νUj [cj − h(yj , ωj)− cj+1 + h(yj+1, ωj)] .

For any j ∈ {2, . . . , n− 1}, the FOCs with respect to cj and yj are given by:

Lcj =fj
[
Gj(δ

α
j ) (αj − λ) + λgj(δ

α
j )(yαj − cαj + cα0 )

]
+ νDj−1 − νDj − νUj−1 + νUj

!
= 0

Lyj =fj

[
−hy(yαj , ωj)

(
Gj(δ

α
j )αj + λgj(δ

α
j )(yαj − cαj + cα0 )

)
+ λGj(δ

α
j )
]

−
(
νDj−1 + νUj

)
hy(y

α
j , ωj) + νDj hy(y

α
j , ωj+1) + νUj−1hy(y

α
j , ωj−1)

!
= 0

The FOC with respect to c0 is identical to the one for the relaxed problem (see Lemma 8).

Combining the FOCs with respect to cj for all j ∈ {0, 1, . . . , n} gives λ = 1. Equation (39) then

follows from rearranging the FOC with respect to cj . Combining the FOCs with respect cj and

yj gives equation (40).

Below, I will exploit that, setting νUj = νDj = 0, Lemma 16 also provides the conditions

for the solution to a relaxed problem that ignores the local IC constraints between the workers

with skill types j and j + 1.

Lemma 17. For any α ∈ Aχ, if k is the lowest skill group that is upwards-linked with l > k,

then

(i) αk > 1,

(ii) δαj > yαj − h(yαj , ωj) for all j ∈ {k, . . . , l}, and

(iii) αj > 1 for all j ∈ {1, . . . , l}.

Proof. For part i, note first that k and l > k cannot be upwards-linked unless either αj+1 >

αj(β
U
j ) for at least one j ∈ {k, . . . , l − 1} or the downward IC between l and l + 1 is binding,

νDl > 0. Assume both conditions would be violated, and consider a relaxed problem where all

local ICs between k and l are ignored. In the solution to this problem, δk ≥ δαRk , δj = δαRj for

all j ∈ {k + 1, . . . , l} and yj = yαRj for all j ∈ {k, . . . , l}. Hence, the solution to this relaxed

problem satisfies all upward IC constraints between k and l. Consequently, these upward IC

constraints cannot be binding in (cα, yα).

Second, assume that there is a skill group j ∈ {k, . . . , l − 1} such that αj+1 > αj(β
U
j ). By

Lemma 6, αj > β̄j > 1. For the monotonicity of α ∈ A, this ensures that αk > 1.

Third, assume that the upward IC between l− 1 and l as well as the downward IC between

l and l + 1 are binding and that αj+1 ≤ αj(β
U
j ) for all j ∈ {k, . . . , l − 1}. Consider a relaxed

problem where only the local ICs between skill groups l − 1 and l are ignored. In the solution

to this relaxed problem, the downward IC between l and l + 1 has to be binding as well.
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From Lemma 16, the solution of this problem satisfies yl−1 = yαRl−1, δl−1 ≥ δ∗(ωl−1) + (αl−1 −
1)/Al−1(δl−1) and δl < yl − h(yl, ωl) + (αl − 1)/Al(δl). By αl < αl−1, this allocation has to

satisfy

δl − δl−1 <

(
1

Al(δl)
− 1

Al−1(δl−1)

)
(αl−1 − 1) + yl − h(yl, ωl)− δ∗(ωl−1) .

The allocation only violates the upward IC constraint (33) if δl − δl−1 > h(yl, ωl−1)− h(yl, ωl).

Hence, this can only result if(
1

Al(δ
αP
l )
− 1

Al−1(δαPl−1)

)
(αl−1 − 1) > δ∗(ωl−1)−

[
yαPl − h(yαPl , ωl−1)

]
≥ 0 ,

where the last inequality follows by the definition of δ∗(ωl−1). Recall that Al(δ
αP
l ) < Al−1(δαPl−1)

by Lemma 2. Hence, the condition above can only be satisfied if αl−1 is strictly larger than 1.

But this implies that αk > 1 for all α ∈ Aχ.

For part ii, note that k is by construction the lowest skill group that is upwards-linked to l,

i.e., the upward IC between k − 1 and k is not binding. Hence, δαk > yαk − h(yαk , ωk) + αk−1
Ak(δαk ) >

yαk − h(yαk , ωk) because αk > 1 as shown in part (i). By Lemma 16, we have yαj > yαRj for all

j ∈ {k, . . . , l − 1} because the corresponding upward IC constraints are binding, i.e., νUj > 0.

As usual, incentive compatibility also requires yαj+1 > yαj . The single-crossing condition hence

ensures that, for all j ∈ {k, . . . , l − 1}, yαj − h(yαj , ωj) > yαj+1 − h(yαj+1, ωj) and

δαj+1 = δαj + h(yαj+1, ωj)− h(yαj+1, ωj+1)

> yαj − h(yαj , ωj) + h(yαj+1, ωj)− h(yαj+1, ωj+1) ≥ yαj+1 − h(yαj+1, ωj+1) .

For part iii, finally, assume that m is the highest skill group that is upwards-linked with k.

By the previous arguments, δαm > yαm − h(yαm, ωm). At the same time, δαm < yαm − h(yαm, ωm) +

(αm − 1)/Am(δαm) by equation (39). Both statements can only be consistent if αm > 1. For all

α ∈ Aχ, we hence have αj > 1 for all j ∈ {1, . . . ,m}.

Lemma 18. For any α ∈ Aχ, if the skill groups j and j + 1 are downwards-linked and δαj ≤
yαj − h(yαj , ωj), then (cα, yα) also involves δαj+1 ≤ yαj+1 − h(yαj+1, ωj).

Proof. If the downward IC constraint (29) is binding, δj+1 = δj+h(yj , ωj)−h(yj , ωj+1). Hence,

we have δj+1 ≤ yαj − h(yαj , ωj+1) ≤ yαj+1 − h(yαj+1, ωj+1). The second inequality results because

yj ≤ yj+1 in every incentive-compatible allocation and yαj+1 ≤ arg maxy>0 y − h(y, ωj+1) if the

skill groups j and j + 1 are downwards-linked.

Lemma 19. For any α ∈ Aχ, there exists a number kα ∈ (0, n] such that labor supply in skill

group j is upwards distorted at the extensive margin if and only if j ∈ {l ∈ J : l ≤ kα}.

Proof. Fix some α ∈ Aχ. Consider a skill group j for which labor supply in (cα, yα) is not

upwards distorted at the extensive margin, δαj ≤ yαj − h(yαj , ωj). As I will show, this ensures

that optimal labor supply is not upwards distorted at the extensive margin in any skill group

h > j as well.
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By Lemma 17, j cannot be upwards-linked to other skill groups. Let l be the highest skill

group to which j is downwards-linked. (Note that l equals j if the downward IC between skill

groups j and j + 1 is slack.) By Lemma 18, δαk ≤ yαk − h(yαk , ωk) for all k ∈ {j, . . . , l}. By

Lemma 16, we must at the same time have δαl ≥ yαl − h(yαl , ωl) + (αl − 1) /Al(δ
α
l ). Hence, we

must have αl ≤ 1.

Consequently, there cannot be upwards-linked skill groups above l by Lemma 16. For any

unlinked skill group k > l, αk < αl ≤ 1 ensures that labor supply is not upwards distorted at

the extensive margin. For any downwards-linked skill groups k > l and m, αk < 1 and νDk > 0

jointly ensure that δk < yαk − h(yαk , ωk). By Lemma 18, the same conditions holds for the skill

groups k+ 1 to m. Hence, labor supply is not upwards distorted at the extensive margin in any

skill group h > j.

Lemma 20. Consider some weight α ∈ Aχ such that the optimal tax problem has an interior

solution (cα, yα). Then,

(i) the consumption level cα0 of the unemployed is strictly positive;

(ii) there is a number kα ∈ (0, n) such that optimal output is

(a) upwards distorted at the extensive margin in skill group j if and only if j ≤ kα, and

(b) downwards distorted or undistorted at the intensive margin in skill group j for all

j ≥ kα;

(iii) optimal output in the highest skill group n is undistorted at the intensive margin and

downwards distorted at the extensive margin.

Proof. (i) Consider some implementable and Pareto-efficient allocation (c, y) with c0 ≤ 0.

In this allocation, the feasibility condition must be satisfied with equality, so that c0 =∑n
j=1 fjGj(δj)(yj − cj + c0) ≤ 0. Moreover, an increase in c0 must not self-financing. I

will show that there exists a marginal variation that is feasible, incentive-compatible and

welfare-increasing given any weight sequence α ∈ Aχ.

Consider an allocation (c̃, y) with c̃j = cj − ε for all j ∈ J and c̃0 chosen to balance the

feasibility condition. In particular, consider a marginal increase in ε from ε = 0. This

leaves the IC constraints between all workers satisfied, but induces some workers in all

skill groups to leave the labor force. Taking these responses into account, we have

dc̃0

dε

∣∣∣∣
ε=0

=

∑n
j=1 fjGj(δj)−

∑n
j=1 fjGj(δj)Zj

1−
∑n

j=1 fjGj(δj) +
∑n

j=1 fjGj(δj)Zj
,

where the denominator is strictly positive (otherwise, an increase in c0 would be self-

financing) and Zj =
gj(δj)
Gj(δj)

(yj − cj + c0) =
gj(δj)
Gj(δj)

(yj − h(yj , ωj)− δj). If allocation (c, y)

is welfare-optimal, there is a unique number k ∈ (0, n] such that Zj < 0 for all j < k and

Zj ≥ 0 for all j ≥ k by Lemma 18. Moreover,
gj(δj)
Gj(δj)

= Aj(δj) > Ak(δk) for all j < k and
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gj(δj)
Gj(δj)

< Ak(δk) for all j > k by Lemma 2. Hence, we have

n∑
j=1

fjGj(δj)Zj < Ak(δk)

n∑
j=1

fjGj(δj) (yj − cj + c0) = Ak(δk)c0 ≤ 0 ,

which implies that dc̃0
dε

∣∣∣
ε=0

>
∑n
j=1 fjGj(δj)

1−
∑n
j=1 fjGj(δj)

. The marginal welfare effect of increasing ε

follows as

dW (c, y;α)

dε

∣∣∣∣
ε=0

= −
n∑
j=1

fjGj(δj)αj +

1−
n∑
j=1

fjGj(δj)

α0
dc̃0

dε

∣∣∣∣
ε=0

> −
n∑
j=1

fjGj(δj)αj +

n∑
j=1

fjGj(δj)α0 = α0 − αM ,

where αM = 1 is the average social weight in the population. For all α ∈ Aχ, α0 > αM .

Hence, an increase in ε is strictly welfare-increasing, and the initial allocation with c0 ≤ 0

is not welfare-maximizing.

(ii) For part (a), there exists a number kα ∈ (0, n] with the required properties by Lemma 19.

Assume that kα = n, i.e., that labor supply in all skill groups is upwards distorted at the

extensive margin. Feasibility then requires that c0 =
∑n

j=1 fjGj(δ
α
j )
(
yαj − cαj + cα0

)
=∑n

j=1 fjGj(δ
α
j )
(
yαj − h(yαj , ωj)− δαj

)
< 0. This is inconsistent with part (i) of this

Lemma. Hence, kα < n for all α ∈ Aχ.

For the statement in part (b), note that labor supply in skill group j can only be upwards

distorted at the intensive margin if j − 1 and j are upwards-linked, i.e., νUj−1 > 0 (see

Lemma 16). By Lemma 17 (ii), this can only be true if labor supply in skill group j is

upwards distorted at the extensive margin.

(iii) For all α ∈ Aχ, δαn < yαn − h(yαn , ωj) as argued in the proof to part (ii). Hence, n − 1

and n cannot be upwards-linked by Lemma 17. If n − 1 and n are downwards-linked or

unlinked, yαn = yαRn : Labor supply in skill group n is undistorted at the intensive margin.

This moreover implies that yαn − h(yαn , ωn) = δ∗(n). Hence, δαn < δ∗(ωn): labor supply in

skill group is downwards distorted at the extensive margin.

To prove Proposition 1, it only remains to show that the optimal tax problem has a solution

with δj ∈
[
δ, δ̄
)

for any α ∈ Aχ.

Lemma 21. For all α ∈ Aχ, the optimal tax problem has a maximum (cα, yα) with δj ∈
[
δ, δ̄
)
.

Proof. Fix some α ∈ Aχ. By Lemma 5, the FOCs with respect to yj and δj are satisfied by

a unique tuple (yαj , δ
α
j ) if the local IC constraints between skill groups j, j − 1 and j + 1 are

non-binding. In the following, I only consider the cases where skill group j is either downwards-

linked or upwards-linked to skill group j + 1 only. Similar proofs are available on request for

cases where some skill groups k and l > k + 1 are downwards-linked or upwards-linked.
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First, assume that the downward IC (29) between skill groups j and j + 1 is binding. For

simplicity, I henceforth write Hj(yj) := h(yj , ωj) − h(yj , ωj+1). The FOCs with respect to cj ,

cj+1 and yj (see Lemma 16) can be combined to get the optimality conditions

Z1(yj , δj) = Bj(δj , yj) +Bj+1(δj+1, yj+1) = 0

Z2(yj , δj) = Bj+1(δj+1, yj+1) + fjGj(δj)Cj(yj) = 0 ,

where I define Bk(δk, yk) := fk [Gk(δk)(αk − 1) + gk(δk) (yk − h(yk, ωk)− δk)] and Cj(yj) :=

[1− hy(yj , ωj)] /Hj(yj). By the binding downward IC constraint, we have 1 − hy(yj , ωj) > 0,

Cj > 0, Bj+1 < 0 and Bj > 0 in allocation (cα, yα). Z1 and Z2 are continuous in yj , δj and

δj+1. Moreover, I will show that Z1 has a root in δj at which ∂Z1/∂δj < 0, and that Z2 has a

root in yj at which ∂Z2/∂yj < 0.

To start, consider function Z1 for some fixed level yj < yαRj . Function Bj(δj , y
αR
j ) has a

unique root δj1 ∈
(
δ, δ̄
)

for any αk ∈ [0, χ) by Lemma 5. Function B̃j+1(δj) := Bj+1(δj +

Hj(y
αR
j ), yαRj+1) either has a unique root δj2 in

(
δ, δ̄
)

as well, or it is negative for all δj ∈ ∆. In

the first case, δ < δj2 < δj1 < δ̄. By Lemma 5, Bk is strictly decreasing in δk at its roots for

any k ∈ J . For any yj < yαRj , the root δj2 is increased, while the root δj1 is decreased. As Bj

and Bj+1 are continuous, Z1 must have a root in the interval (δj2, δj1). In the second case, if

δαj = δ results if and only if Bj(δ, y
αR
j ) +Bj+1(δ +Hj(y

αR
j ), yαRj+1) < 0.

Next, consider Z2 for some fixed δj ∈
(
δ, δαRj

)
. At any root of Z2 in yj , we have Bj+1 < 0

and Cj(yj) > 0. Note that C ′j(yj) = −hy(yj ,ωj)H
′
j(yj)+(1−hy(yj ,ωj))H

′′
j (yj)

H′j(yj)
2 . By hyω < 0 and

hyyω ≤ 0, C ′j(yj) < 0 for all yj ≤ yαRj . The root yj1 of Bj+1 must again be located left of yαRj ,

the root of Cj . Hence, function Z2 has a root yj in the interval
(
yj1, y

αR
j

)
.

Second, assume that the upward IC constraint (33) is binding. Recall that this only results

for αj1 and αj+1 > 1. Then, the optimal tuple (δj , yj+1) is implicitly defined by

Z3(yj+1, δj) = Bj(δj , yj) +Bj+1(δj+1, yj+1) = 0

Z4(yj+1, δj) = Bj+1(δj+1, yj+1) + fj+1Gj+1(δj+1)Cj+1(yj+1) = 0 ,

where Cj+1(yj+1) := [1− hy(yj+1, ωj+1)] /Hj(yj+1). By the binding upward IC constraint, we

have 1− hy(yj+1, ωj+1) < 0, Cj+1(yj+1) < 0, Bj+1 > 0 and Bj < 0 in this optimum.

Again, I start by showing that Z3 has a root in δj for some fixed yj+1 > yαRj+1. Function

Bj has a unique root δj3 ∈
(
δ∗(ωj), limαj→χ δ

αR
j

)
. For any yj+1 < yαRj+1, function B̃j+1(δj) =

Bj+1(δj + Hj(yj+1), yj+1) has a unique root δj4 such that δj4 + Hj(yj+1) is below the optimal

δαRj+1 for αj+1 < χ. Both functions are strictly positive left of these roots, and strictly negative

right of these roots. As Bj+1 > 0 and Bj < 0 must be satisfied, δj3 < δj4. Hence, Z3 must have

a root in δj in the interval (δj3, δj4).

Finally, consider function Z4 for some fixed δj > δαj . Bj+1 has a unique root in yj+1 above

yαRj+1, while Cj+1(yj+1) has a unique root at yαRj+1. Both Bj+1 and Cj+1 are strictly decreasing

at their roots. Hence, Z4 has a root in yj+1 with yj+1 > yαRj+1.
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Proof of Proposition 2

I prove Proposition 2 in two steps, starting with a preliminary Lemma.

Lemma 22. Consider a partially relaxed version of the optimal tax problem in which all con-

straint from the relaxed problem and, additionally, all local IC constraints between the workers

in skill groups 1 and k are taken into account. For any α ∈ AUk , optimal output in the solution

(cαP , yαP ) to this partially relaxed problem is

• upwards distorted at the intensive margin in skill groups {2, . . . , k};

• upwards distorted at the extensive margin in skill groups {1, . . . , k}.

Proof. Fix some α ∈ AUk . By Lemma 15, the relaxed problem’s solution (cαR, yαR) violates

the upward IC for at least one pair of skill groups (j, j + 1) with j ∈ {1, . . . , k − 1}, where

αj+1 < βDj (αj).

For the first step, consider the intermediate problem A that takes into account the local IC

constraints between skill groups j and j + 1, but ignores the ICs between all other skill pairs. I

denote the solution to this problem by (cA, yA). By αj+1 > βUj (αj), the upward IC is binding

with νUj > 0. From Lemma 16, we know that yAj+1 > yαRj+1, δAj > δαRj and δAj+1 < δαRj+1. For any

other skill groups l, we have yAl = yαRl and δAl = δαRl . In particular, this is true for skill group

j + 2. If j + 2 ≤ k, (cA, yA) violates the upward IC constraint between skill groups j + 1 and

j + 2, because δαRj+2 − δαRj+1 ≥ h(yαRj+2, ωj+1)− h(yαRj+2, ωj+2) by construction for any α ∈ AUk .

For the second step, consider the intermediate problem A2 that takes into account the local

IC constraints between the skill groups j, j+ 1 and j+ 2. In the solution (cA2, yA2) to problem

A2, both upward IC constraints are binding with νUj > 0 and νUj+1 > 0. Consequently, we have

yA2
j+2 > yαRj+2, yA2

j+1 > yαRj+1, δA2
j+2 < δαRj+2 and δAj > δαRj , while yA2

j+3 = yαRj+3 and δA2
j+3 = δαRj+3. These

inequalities imply that, if j+3 ≤ k, (cA2, yA2) violates the upward IC between skill groups j+2

and j+3 for any α ∈ AUk . The same arguments can be repeated to show that, in the solution to

problem B that takes into account the local ICs between skill groups {j, . . . , k} only, all upward

IC constraints are binding and labor supply in each skill group j ∈ {j + 1, . . . , k} is upwards

distorted at the intensive margin.

For the third step, note that the solution to problem B involves yBj = yαRj , δBj > δαRj and

δBj−1 = δαRj−1. Hence, this allocation violates the upward IC constraint between skill groups j−1

and j for any α ∈ AUk . In problem B2 that takes into account the local ICs between skill groups

{j − 1, . . . , k} only, all upwards IC constraints are binding again. Hence, we have yB2
j > yαRj ,

yB2
j−1 = yαRj−1, δB2

j−1 > δαRj−1 and δB2
j−2 = δαRj−2, which ensures that the upward IC between skill

groups j − 2 and j − 1 is violated. The same arguments can be repeated to show that, in

allocation (cαP , yαP ), all upward IC constraints along the skill dimension are binding and that

labor supply is downwards distorted at the intensive margin in each skill group j ∈ {2, . . . , k}.
Finally, Lemma 17 implies that, if skill groups 1 and k are upwards-linked, then labor supply

in all these skill groups is upwards distorted at the extensive margin.

Building on Lemma 22, I can now prove Proposition 2.
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Proof. Fix some α ∈ AUk such that αj+1 ≤ βUj (αj) for all j ∈ {k, . . . , n− 1}, i.e., that the

solution to the relaxed problem violates no upward IC except the ones between skill groups 1

and k. This also implies that αj > αj+1 > 1 for all j ∈ {1, . . . , k − 1}. The following proof

focuses on this case. The results derived below hold for the alternative case that (cαR, yαR)

violates additional upward ICs among higher-skilled workers a forteriori. To economize on

notation, I write Hk(yj) := h(yj , ωk)− h(yj , ωk+1) in the following.

Consider an auxiliary problem A that takes into account all local IC constraints except the

ones between skill groups k and k + 1. By Lemma 22, the solution (cA, yA) involves binding

upward IC between skill groups j and j+1 with νUj > 0 for all j ∈ {1, . . . , k − 1}, while all other

local IC constraints are non-binding with νDj = νUj = 0 for all j ∈ {k + 1, . . . , n− 1}. Recall

that the relaxed problem’s solution satisfies both neglected IC constraints for any α ∈ AUk , i.e.,

Hk

(
yαRk

)
≤ δαRk+1 − δαRk ≤ Hk

(
yαRk+1

)
.

By Lemma 16, the solution (cA, yA) involves yAk > yαRk , δAk < δαRk and yAj = yαRj as well as

δAj = δαRj for all j > k. By hyw < 0, yAk > yαRk implies that Hk(y
A
k ) > Hk(y

αR
k ). Hence, (cA, yA)

may violate the downward IC between k and k + 1, the corresponding upward IC or none of

them. If (cA, yA) satisfies both IC constraints, we have (cα, yα) = (cA, yA). In the following, I

consider the remaining two cases.

First, assume that (cA, yA) violates the downward IC constraint between skill groups k and

k+1. Consider problem B that takes into account all local IC constraints except those between

k+ 1 and k+ 2. In its solution (cB, yB), the upward IC between k− 1 and k and the downward

IC between k and k + 2 are binding with νUk−1 > 0 and νDk > 0. Hence, we have δBk < δαRk
and δBk+1 > δαRk+1. By the binding downward IC, we have Hk(y

B
k ) = δBk+1 − δBk > δαRk+1 − δαRk ≥

Hk(y
αR
k ). This ensures that yBk > yαRk by hyω < 0. Note further that (i) δBk < δAk and (ii)

yBj = yαRj and δBj = δαRj for all j > k+ 1. By (i), the upward IC between k− 1 and k continues

to be binding. By (ii), allocation (cB, yB) satisfies the (neglected) upward IC between skill

groups k + 1 and k + 2, and may satisfy or violate the corresponding downward IC. Adding

the IC constraints for all skill groups above k + 1 stepwise, similar arguments as in the proof

to Proposition 5 in Appendix B.1 can be applied to show that the optimal allocation (cα, yα)

satisfies the following conditions:

(a) the upward ICs between all skill levels 1 and k are binding and yαj > yαRj for all j ∈
{2, . . . , k},

(b) yα is upwards distorted at the extensive margin in all skill groups 1 to k by Lemma 17,

(c) there is a unique skill group l ∈ {k + 1, . . . , n} such that the skill groups k and l are

downwards-linked, while all skill groups between l and n are unlinked.

Second, assume that (cA, yA) violates the upward IC constraint between skill groups k and

k + 1. Then, allocation (cB, yB) involves binding upward ICs between k − 1 and k as well as

between k and k+1. Hence, we have δBk+1 < δαRk+1 and yBk+1 > yαRk+1. By the previous arguments,

allocation (cB, yB) may violate the downward IC between k + 1 and k + 2, the corresponding
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upward IC or none of both. In all three cases, skill groups 1 and k+ 1 continue to be upwards-

linked in (cα, yα) and yαj > yαRj for all j ∈ {2, . . . , k + 1} as shown above. Besides, labor supply

in all skill groups j ∈ {1, . . . , k + 1} is upwards distorted at the extensive margin in (cα, yα) by

Lemma 17. The same arguments can be repeated to show that there always exists a skill group

l ∈ {k + 1, . . . , n− 1} such that the skill groups 1 and l are upwards-linked and (a) either all

skill groups between l and n are unlinked or (b) there is a skill group q ∈ {l, . . . , n} such that the

skill groups l and q are downwards-linked, while all skill groups between q and n are unlinked.

Finally, note that skill groups 1 and n cannot be upwards-linked, i.e., l 6= n, by Proposition

1.

Proof of Proposition 3

Proposition 3 provides sufficient conditions for the existence of regular combinations of Ψ and γ

such that the endogenous (average) welfare weights ᾱ are elements of the set AU . It is proven in

Lemmas 23 and 24 below by example, for Ψ being equal to the identity function, i.e., Ψ(x) = x

for all x ∈ R.

Lemma 23. Fix some k ∈ {2, . . . , n− 1} and consider a sequence α′(τ) =
(
α′j(τ)

)n
j=k

such

that α′k(τ) = τ and α′j+1(τ) = βDj (α′j(τ)) for all j ∈ {k, . . . , n− 1}. For any τ ∈ (1, χ), there is

a unique natural number mk ≥ k + 1 such that α′j(τ) < 1 if and only if j ∈
{
mk, . . . , n

}
.

Proof. By Lemma 14, βDj (αj) < αj for all αj ≥ 1 and βDj (αj) < 1 for all αj < 1 (for any

j ∈ J−n). Hence, there exists at most one natural number m such that α′m−1 ≥ 1 and α′m < 1.

It remains to show that there is a real number µ′ > 0 such that αj − βDj (αj) > µ′ for all j ∈ J
and all αj ∈ [1, χ). If this is true, α′j(τ) < max {τ − (j − k)µ′, 1} for all j > k. Hence, α′j(τ) < 1

is ensured for all j > k + τ−1
µ′ , which directly implies that mk < k + τ−1

µ′ + 1 and that αn < 1

whenever n is large enough. The following proof shows that this is true under Condition 3.

With some abuse of notation, I henceforth denote by δαRk (αk) the level of δk in (cαR, yαR)

given social weight αk. By construction, function βDj satisfies

δαRj+1

(
βDj (x)

)
− δαRj (x) = h

(
yαRj , ωj

)
− h

(
yαRj , ωj+1

)
,

while, for all x ≥ 1, δαRj+1(x)− δαRj (x) ≥ δ∗(ωj+1)− δ∗(ωj) by Lemma 11. Consequently, we have

δαRj+1(x)− δαRj+1(βDj (x)) ≥ δ∗(ωj+1)− δ∗(ωj)−
[
h
(
yαRj , ωj

)
− h

(
yαRj , ωj+1

)]
= yαRj+1 − h

(
yαRj+1, ωj+1

)
−
[
yαRj − h

(
yαRj , ωj+1

)]
=

∫ yαRj+1

yαRj

[1− hy(y, ωj+1)] dy

=

∫ yαRj+1

yαRj

1− 1

1 +
hy(yαRj+1,ωj+1)−hy(y,ωj+1)

hy(y,ωj+1)

 dy,
where I exploit that hy(y

αR
j+1, ωj+1) = 1. Let ŷ(ω) := arg maxy∈R y − h(y, ω), and ŵ(y) :=
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(ŷ)−1(y) the corresponding inverse function. Then, the following inequality holds

hy(y
αR
j+1, ωj+1)− hy(y, ωj+1)

hy(y, ωj+1)
=

∫ ωj+1

ŵ(y)

hyy(ŷ(ω), ωj+1)

hy(y, ωj+1)

dŷ(ω)

dω
dω

= −
∫ ωj+1

ŵ(y)

hyy(ŷ(ω), ωj+1)

hy(y, ωj+1)

hyω(ŷ(ω), ω)

hyy(ŷ(ω), ω)
dω

> −
∫ ωj+1

ŵ(y)

ŷ(ω)hyy(ŷ(ω), ωj+1)

hy(ŷ(ω), ωj+1)

ωhyω(ŷ(ω), ω)

ŷ(ω)hyy(ŷ(ω), ω)

1

ω
dω

≥
∫ ωj+1

ŵ(y)

µ2

µ1

1

ω
dω =

µ2

µ1
ln

(
ωj+1

ŵ(y)

)
,

where the last line inequality follows from Condition 3. Hence, we can derive the following lower

bound

δαRj+1(x)− δαRj+1(βDj (x)) >

∫ yαRj+1

yαRj

1− 1

1 + µ2
µ1

ln
(
ωj+1

ŵ(y)

)
 dy =

∫ yαRj+1

yαRj

ln
(
ωj+1

ŵ(y)

)
µ1
µ2

+ ln
(
ωj+1

ŵ(y)

)dy
>

∫ ŷ(ω′)

yαRj

ln
(ωj+1

ω′

)
µ1
µ2

+ ln
(ωj+1

ω′

)dy =
ln
(ωj+1

ω′

)
µ1
µ2

+ ln
(ωj+1

ω′

) [ŷ(ω′)− yαRj
]

≥
ln
(ωj+1

ω′

)
µ1
µ2

+ ln
(ωj+1

ω′

)µ2 ln

(
ω′

ωj

)
yαRj

for any ω′ ∈ (ωj , ωj+1). In particular, let ω′ =
√
ωjωj+1 and recall that, by assumption,

ωj+1/ωj ≥ 1 + ε for all j ∈ J−n and some number ε > 0. Denoting ε̃ = ln (1 + ε), we get

δαRj+1(x)− δαRj+1(βDj (x)) >
(µ2ε̃)

2

µ1 + µ2ε̃︸ ︷︷ ︸
:=µ3

yαRj ,

where µ3 is bound away from zero for any j ∈ J−n.

From equation (32), the left-hand side of the last inequality can also be written as

∫ x

βDj (x)

dδαRj+1(x′)

dα
dx′ =

∫ x

βDj (x)

[
Aj+1

(
δαRj (x′)

)]−1

1 + (x′ − 1)

[
1− aj(δαRj (x′))

Aj(δαRj (x′))

]dx′

By Lemma 2, Aj(δ
αR
j ) > An(δαRn ) in any allocation that satisfies all downward IC constraints.

Moreover, α′j(τ) ≤ τ for all j ≥ k, and 1 − aj
(
δαRj

)
/Aj

(
δαRj

)
< 1/(χ − 1) for any α ∈ Aχ

by the construction of χ (see Lemma 5). Hence, dδαRj (x′)/dα is strictly smaller than µ4 :=

An[δαRn (τ)]−1(χ − 1)/(χ − τ) for all j ∈ J and x′ ∈ [1, τ ]. For all j ≥ k and α ∈ [1, τ ], we

consequently have∫ x

βDj (x)
µ4dx

′ = µ4

[
x− βDj (x)

]
> µ3y

αR
j ⇔ x− βDj (x) >

µ3

µ4
yαRk =: µ′ .

As argued above, this ensures that τ − α′j(τ) =
∑j−1

l=k

[
α′k(τ)− βDk (α′k(τ))

]
> (j − k)µ′ if
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α′(τ) ≥ 1, and α′j(τ) < 1 for all j > k+ τ−1
µ′ . Hence, there exists a level mk ∈ [k+1, k+(τ−1)/µ′)

such that, if n > mk, we have αj < 1 if and only if j ≥ mk.

Lemma 24. Define âkU (ζ) := min
{
au1(ζ), . . . , auk−1(ζ)

}
. Let Condition 3 and

ωj+1

ωj
< âkU (ζ) be

satisfied for all j ∈ {1, . . . , k − 1} and some ζ ∈ (1, χ). Then, there exist a number mk ≥ k + 1

and two vectors (φkj )
n
j=1, (δkj )nj=1 with φkj+1 ≥ φkj , φk

mk
> 1 ≥ φk

mk−1
and δkj ∈

(
δ, δ̄
)

for all j ∈ J
such that, if

(i) n ≥ mk and

(ii)
∑n

j=1 fjGj(δ
k
j )φkj > 1,

there exist regular combinations of Ψ and γ for which ᾱ ∈ AUk .

Proof. Assume that Ψ is the identity function and fix some number δ̂ ∈
(
δ∗(ωn), δ̄

)
. Recall that

β̄j is the fixed point of function βUj , which exists if ωj+1/ωj < aUj (ζ) for some ζ ∈ (1, χ) under

Conditions 1 and 2. Define β̂kj := max
{
β̄j , . . . , β̄k−1

}
, γk1 = β̂k1 , γkj = min

{
β̂kj , β

U
j−1(γj−1)

}
for all j ∈ {2, . . . , k} and γkj = max

{
βDj−1(γkj−1), β

j
, . . . , β

n−1

}
for all j ∈ {k + 1, . . . , n}. By

construction, γkj+1 ≤ γkj for all j ∈ J−n. By Lemma 23, there is a number mk ≥ k+ 1 such that

γkj < 1 if and only if j ∈
{
mk, . . . , n

}
whenever n ≥ mk (i.e., if (i) in the Lemma above holds).

Now, consider the type-dependent weighting function γ̃k : Ω×∆→ R such that

γ̃k(ωj , δ) =

 γkj for j ∈ J, δ < δ̂ ,

γk0 =
1−

∑n
j=1 fjGj(δ̂)γj

1−
∑n
j=1 fjGj(δ̂)

for j ∈ J, δ ≥ δ̂ .

Let δkj be equal to δαRj (γkj ) for each j ∈ J . Then, the implied average weight ᾱn (among

workers in skill group n) equals γn < 1, and δkn < δ∗(ωn) < δ̂. Moreover, the average weight of

workers in skill group j is given by ᾱj = γkj and δkj < δkn < δ̂ for all j ∈ J−n (as all downward

IC constraints are satisfied, see proof of Lemma 2). Finally, the average social weight of the

unemployed is given by ᾱ0 =
[
1−

∑n
j=1 fjGj

(
δkj

)
γkj

]
/
[
1−

∑n
j=1 fjGj

(
δkj

)]
.

By construction, ᾱ satisfies ᾱj+1 ≥ βUj (ᾱj) for all j ∈ {1, . . . , k − 1} and ᾱj+1 ≥ βDj (ᾱj) for

all j ∈ {k, . . . , n− 1}. Moreover, ᾱj ≥ ᾱj+1 for all j ∈ J and ᾱj > ᾱj+1 for all j ∈
{
k, . . . ,mk

}
.

We also have ᾱ0 > ᾱ1 = β̂k1 if and only if

n∑
j=1

fjGj

(
δkj

) [
β̂k1 − γkj

]
> β̂k1 − 1 . (41)

Let φkj = (β̂k1 − γkj )/(β̂k1 − 1) for all j ∈ J . Then, condition (ii) in Lemma 24 ensures ᾱ0 > β̂1.

For the final step, note that the average welfare weights ᾱ are not an element of AU given

γ because ᾱj = ᾱj+1 = β̄j = βUj (β̄j) for at least one j ∈ {1, . . . , k − 1}. Consider the weighting

function γε such that

γε(ωj , δ) =


γεj = γkj + εk for j ∈ {1, . . . , k} , δ < δ̂ ,

γεj = max
{
βDj−1

(
γεj−1

)
, β

j
, . . . , β

n−1

}
for j ∈ {3, . . . , n} , δ < δ̂ ,

γε0 =
1−

∑n
j=1 fjGj(δεj)γεj

1−
∑n
j=1 fjGj(δεj)

for j ∈ J , δ ≥ δ̂ ,
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where δεj is the level of δj in the relaxed problem’s solution given αj = γεj for each j ∈ J . For each

j ∈ {1, . . . , k}, fix εj at some level in
(

0, χ− β̂k1
)

such that εj > εj+1. By Lemma 13, for any j

such that γkj = γkj+1, there is a unique number ε̄(εj+1) > 0 such that γεj+1 ≥ βUj (γεj ) if and only if

εj−εj+1 ∈ (0, ε̄(εj+1)). If the difference εj−εj+1 is sufficiently small for each j ∈ {1, . . . , k − 1},
the resulting average weight ᾱ0 of the unemployed agents continues to be strictly larger than γε1.

Hence, the implied average weights satisfy ᾱj > ᾱj+1 for all j ∈ {0, . . . ,m− 1}. Consequently,

ᾱ ∈ AU results if γεj+1 < γεj for all j ∈ {m, . . . , n− 1} as well. (If γε involves γεj+1 = γεj for

some j ≥ m, then one can construct a weighting function γ that is strictly decreasing over the

skill dimension and has otherwise identical properties, i.e., for which ᾱ ∈ AUk .)

Proof of Lemma 7

Proof. First, note that minimizing the deadweight loss (5) is equivalent to maximizing the term∑n
j=1 fj

∫ δj
δ gj(δ) [yj − h(yj , ωj)− δ] dδ over c and y. The Lagrangian for the problem of efficient

redistribution is hence given by

L =

n∑
j=1

fj

∫ δj

δ
gj(δ) [yj − h(yj , ωj)− δ] dδ + λF

 n∑
j=3

fjGj(δj)(yj − cj)−R


+λE

 2∑
j=1

fjGj(δj)(cj − yj) +

n∑
j=1

fj [1−Gj(δj)] c0 −R


+µ [c1 − h(y1, ω1)− c2 + h(y2, ω1)] ,

where I have included the constraints that resources R are transferred away from the workers in

skill groups 3 and higher (Lagrange parameter λF ), the same resources are transferred towards

the unemployed and the workers in skill groups 1 and 2 (λE), and the upward IC constraint

between the workers in skill groups 1 and 2 (µ). Note that the first two constraints are binding

in the solution of the efficient redistribution problem for any R > 0. Hence, λE and λF are

strictly positive in any solution.

First, I solve the problem ignoring the upward IC constraint, and denote the solution by

(cER, yER). The FOCs with respect to cj and yj for j ∈ {1, 2} are given by

Lcj = (1− λE)fjgj(δ
ER
j )

[
yERj − h(yERj , ωj)− δERj

]
+ λEfjGj(δ

ER
j )

!
= 0 , and

Lyj = fjGj(δ
ER
j )

[
1− hy(yERj , ωj)

]
−hy(yERj , ωj)(1− λE)fjgj(δ

ER
j )

[
yERj − h(yERj , ωj)− δERj

]
− λEfjGj(δERj )

!
= 0 .

The combination of both FOCs yields that labor supply in both low-skill groups is undis-

torted at the intensive margin, hy(y
ER
j , ωj) = 1, which also implies yERj − h(yERj , ωj) = δ∗(ωj).

Rearranging the first condition, we additionally get the inverse elasticity rule (24). From

the second-order condition, λE has to attain a value below some bound λ̂ < 1 at any so-

lution (the exact level of λ̂ depends on the type distribution K). Hence, δERj > δ∗(ωj) for

j ∈ {1, 2} and any R > 0 such that an interior solution exists. From Lemma 2, we know that
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η1(c, y) = g1(δ1)
G1(δ1) > η2(c, y) = g2(δ2)

G2(δ2) in any incentive-compatible allocation, which implies that

cER2 − yER2 > cER1 − yER1 . Hence, allocation (cER, yER) satisfies the downward IC (22), and

might satisfy or violate the upward IC (23).

Fix a number R > 0, the type distribution K and all skill levels except ω2. Similar arguments

as in the proof of Lemma 13 (i) can be applied to show that there is some number aE > 1 such

that the upward IC constraint is violated by the allocation (cER, yER) whenever ω2 ∈
(
ω1, a

Eω1

)
.

First, consider the limit case ω2 = ω1. In this case, λE ∈ (0, 1) and δER2 ≥ δER1 by Condition 1.

As shown in the proof of Lemma 13 (i), allocation (cE , yE) unambiguously violates the upward

IC constraint after a marginal increase in ω2 for any fixed λE ∈ (0, 1). Because ω2 and all other

variables enter the maximization program continuously, ω2 also affects the value of the Lagrange

parameter λE continuously. Hence, λE is bounded away from 0 and 1 after a marginal increase

in ω2. Thus, there is a number aE > 1 such that the upward IC constraint is violated for any

ω2 ∈
(
ω1, a

Eω1

)
.

Next, consider a combination of R > 0 and ω2 ∈ (ω1, ω3) such that (cER, yER) violates the

upward IC constraint. Taking into account this constraint for the Lagrangian, the adjusted

FOCs with respect to c1, c2 and y2 are given by

Lc1 = (1− λE)f1g1(δE1 )
[
yE1 − h(yE1 , ω1)− δE1

]
+ λEf1G1(δE1 ) + µ

!
= 0 ,

Lc2 = (1− λE)f2g2(δE2 )
[
yE2 − h(yE2 , ω2)− δE2

]
+ λEf2G2(δE2 )− µ !

= 0 , and

Ly2 = f2G2(δE2 )
[
1− hy(yE2 , ω2)

]
− hy(yE2 , ω2)(1− λE)f2g2(δE2 )

[
yE2 − h(yE2 , ω2)− δE2

]
−λEf2G2(δE2 ) + µhy(y2, ω1)

!
= 0 .

Combining the two latter conditions shows that, as usual, yE2 is upwards distorted if and only

if the upward IC constraint is binding with µ > 0,

f2G2(δE2 )
[
hy(y

E
2 , ω2)− 1

]
(1− λE) = µ

[
hy(y

E
2 , ω1)− hy(yE2 , ω2)

]
> 0 .

Using the FOC with respect to c2, we can replace µ in the previous condition to get

f2G2(δE2 )
[
hy(y

E
2 , ω2)− 1

]
hy(y2, ω1)− hy(y2, ω2)

=
λE

1− λE
f2G2(δE2 )− f2g2(δE2 )

[
δE2 − yE2 + h(yE2 , ω2)

]
. (42)

Combining the FOCs with respect to c1 and c2 and inserting yE1 − h(yE1 , ω1) = δ∗(ω1) gives

λE
1− λE

=
f1g1(δE1 )

[
δE1 − δ∗(ω1)

]
+ f2g2(δE2 )

[
δE2 − yE2 + h(yE2 , ω2)

]
f1G1(δE1 ) + f2G2(δE2 )

.

Combining the last equation and equation (42), we can eliminate the Lagrangian parameter λE

and rearrange terms to obtain the optimality condition (25), according to which the optimal

level of yE2 equates the marginal deadweight losses from distortions at both margins.
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B Supplementary material

Appendix B provides additional formal results, comments and figures that complement the

arguments and theoretical results in the main text. The proofs to all formal results are available

upon request.

B.1 Optimal income taxes for other welfare weights

In the following, I define two further sets of social weight sequences, for which specific properties

of the optimal allocation can be identified unambiguously (see Propositions 4, 5, 6 and 7 below).

Definition 2. The sets of weight sequences AN and AD are defined as follows:

(i) Set AD contains all sequences α ∈ Aχ such that αj+1 ≤ βDj (αj) for all j ∈ J−n, with a

strict inequality for at least one j ∈ J−n.

(ii) Set AN contains all sequences α ∈ Aχ such that αj+1 ∈
[
βDj (αj), β

U
j (αj)

]
for all j ∈ J−n.

The construction of both subsets can again be illustrated using Figure 1 in Section 5. As

before, assume that the functions βDj and βUj were identical for all j ∈ J−n. For social weights in

AD, all weight-pairs are located in region I at the lowest part of Figure 1. This case represents

a social planner with large concerns for local redistribution between all pairs of workers with

adjacent skill types, including the workers with the lowest skill types. A limit case is given by

the Rawlsian welfare function. For social weights in AN , all weight-pairs are located in region

II in the center of Figure 1. This case represents a social planner with rather limited concerns

for redistribution between all groups of workers.

Proposition 4. For any α ∈ AD, optimal output yα is

• downwards distorted at the intensive margin in all skill groups j ∈ J−n,

• downwards distorted at the extensive margin in all skill groups if α1 is below some threshold

γD > 1.

By Proposition 4, optimal labor supply by all except the highest-skilled workers is downwards

distorted at the intensive margin for any social weights in the set AD. For social weight in this

set, the “central result of optimal income taxation” (Hellwig 2007) is hence valid: The optimal

marginal tax is strictly positive for all income levels below the top income yαn . At the extensive

margin, labor supply in all skill groups is downwards distorted if α1, the weight of the lowest-

skilled workers, is below some threshold γD. Note that the threshold γD is strictly higher than

in the solution to the relaxed problem characterized in Lemma 5 (where it is equal to 1). If

and only if α1 < γD, the optimal participation taxes are strictly positive at all income levels as

well: the optimal income tax is a Negative Income Tax.

Proposition 5. For any α ∈ AN , optimal output yα is

• undistorted at the intensive margin in all skill groups;
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• upwards distorted at the extensive margin in each skill group j such that αj > 1.

By Proposition 5, optimal labor supply is undistorted at the intensive margin in all skill

groups for any social weights in the set AN . This does not imply identical tax levels for all

agents.73 The optimal allocation can be decentralized by a piecewise horizontal tax schedule,

however, in stark contrast to the before-mentioned “central result of optimal tax theory”. The

optimal distortions at the extensive margin in each skill group depend on whether the social

weight associated to this group is below or above the average weight of 1. If and only if α1 > 1,

the least-productive workers benefit from a negative participation tax. Hence, the labor supply

distortions in the solutions to the relaxed problem and the full problem of optimal taxation are

identical (see Lemma 5).

Proposition 3 above provides conditions under which the marginal welfare weights belong

to set AU for some regular combinations of Ψ and γ, giving rise to the optimality of an EITC

with negative marginal taxes and negative participation taxes. In the following, I clarify the

conditions under which some welfare functions with standard properties give rise to welfare

weights in the sets AD and AN .

Proposition 6. There is a number aD > 1 such that, if
ωj+1

ωj
< aD for all j ∈ J−n, there exist

regular combinations of Ψ and γ for which ᾱ ∈ AD.

Proposition 7. There exist regular combinations of Ψ and γ for which ᾱ ∈ AN .

By Proposition 6, there exist well-behaved welfare functions for which a Negative Income Tax

is optimal whenever the relative distance between all pairs of adjacent skill types is sufficiently

small. By Proposition 7, there exist well-behaved welfare functions for which optimal labor

supply is undistorted at the intensive margin in all skill groups whenever Conditions 1, 2 and 3

are satisfied.

B.2 Construction of weight sequences for simulations

Figure 4 below graphically depicts for all agents with incomes up to $100, 000 the welfare weight

sequences αA and αB, which are used in the numerical simulation in Section 7. In particular,

it plots the welfare weight αj associated to each skill group j ∈ J (on the vertical axis) against

the skill-specific gross income yαj in the optimal allocation (on the horizontal axis). As can be

seen, both sequences αA and αB are monotonically decreasing.

The blue solid line shows sequence αA, which is constructed by setting αAj = 1.05 for all

j ∈ {1, . . . , 41}, i.e., all workers with incomes below yA41 = $7, 022. Note that this weight

is above the fixed-point β̄j , implying that the upward IC constraint between skill group j

and j + 1 is violated for each j ≤ 40 (see Lemma 6). For all j > 41, I set weight αAj =

max
{
βDj−1(αAj−1), β

j
, . . . , β

n−1

}
. By construction, αA is hence an element of set AU41. The

73In contrast, the tax schedule will always be increasing over some income range. Additionally, it may
also be decreasing over some (low) income range.
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Figure 4: Welfare weight sequences αA and αB.

weight αA0 on the unemployed is set to have an average weight of 1 in the optimal allocation.

It is slightly larger than 1.09.74

The green dashed line shows sequence αB, which is constructed just as sequence γk in the

proof of Lemma 24. First, I define the auxiliary function β̂kj := max
{
β̄j , . . . , β̄k−1

}
. Then,

I construct αB by setting αB1 = β̂k̄1 , αBj = min
{
β̂k̄j , β

U
j−1(γj−1)

}
for all j ∈

{
2, . . . , k̄

}
and

αBj = max
{
βDj−1(αBj−1), β

j
, . . . , β

n−1

}
for all j ∈

{
k̄ + 1, . . . , n

}
. Threshold k̄ is set to 53,

which is the highest number in J such that the conditions in Proposition 3 are satisfied, given

φkj equal to (αB1 −αBj )/(αB1 −1) and δkj equal to the level of δj in the relaxed problem’s solution

for sequence αB. Note that yB53 = $15, 016. Finally, I again set αB0 ≈ 1.045 > αB1 ≈ 1.035 to

have an average weight of 1.

B.3 Sensitivity analysis for numerical simulations

The following section investigates the sensitivity of the numerical tax simulations. In particular,

I study how the simulated optimal tax varies with the (intensive-margin) elasticity of income

with respect to the retention rate, and with the profile of the (extensive-margin) participation

elasticities. I concentrate on variations in the empirically relevant ranges.

First, I simulate the optimal tax function if the intensive-margin elasticity σ is higher or

lower than in the benchmark calibration. For this purpose, I fix a sequence of welfare weights

αC that assigns a weight of 1.0475 to the workers in the lowest 39 skill groups (corresponding to

an annual income of $5, 568 or less under the current US tax system), and convexly decreasing

weights to the higher-skilled workers.75 The results of this sensitivity analysis are provided in

Figure 5 and Table 1. In Figure 5, the solid green line shows the optimal participation tax

74Note that the weight sequence αA satisfies the properties of generalized welfare weights for poverty
gap reduction, as specified in (46). In particular, they can be closely approximated by using the simple
functional form q(cj) = [(cj − c̄)/cj)]ρ(αp − αnp), given parameters c̄ = $7.022, αp = 1.05, αnp = 0.96
and ρ = 1.6 (see FN 31).

75Note that sequence αC is constructed to be an element of AU39 for all three considered values of σ.
The shape of αC is very similar to the shape of sequence αA (see Figure 4).
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Figure 5: Optimal participation taxes for different intensive-margin elasticities.

TPM (y) = TM (y) − TM (0) for the benchmark value of σ = 0.3, and the dotted black line again

illustrates the current US EITC for childless workers. The blue dashed line in Figure 5 shows

the optimal participation tax TPIH(y) for a higher intensive-margin elasticity of σ = 0.4, while

the red dash-dotted line shows the optimal participation tax TPIL(y) for a lower elasticity of

σ = 0.2. Table 1 reports key statistics such as phase-in and phase-out endpoints, maximum tax

credits, marginal tax rates (MTR), participation tax rates (PTR), unemployment benefits and

unemployment rates for the corresponding tax functions TIH , TIL and TM .76

Table 1: Simulation results for different intensive-margin elasticities

πj ∈ [0.4, 0.5]
Intensive-margin elasticity (σ) 0.2 0.3 0.4
Phase-in endpoint [$] 6, 359 7, 474 8, 244
Phase-out endpoint [$] 21, 221 21, 969 22, 744
Maximum tax credit [$] 1, 142 1, 124 1, 121
Average MTR phase-in [%] −18.0 −13.2 −9.7
Average MTR phase-out [%] 7.3 7.4 7.3
PTR at bottom [%] −17.2 −37.7 −65.3
PTR at phase-in endpoint [%] −18.0 −15.0 −13.6
Unemployment benefit [$] 2, 329 2, 377 2, 423
Unemployment rate [%] 13.0 12.7 12.4

Figure 5 shows that the optimal tax credits for all three cases are remarkably similar and

more than twice as large as the current US EITC for childless workers. Three differences between

the participation tax functions TPIH , TPIL and TPM are worth mentioning. First, the optimal width

of the phase-in range is increasing in the magnitude of the intensive-margin elasticity. One

76The participation tax rate is given by the ratio of the participation tax TP (y) and the pre-tax income
level y.
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reason for this result is that, the higher the income elasticity, the larger is the income response

that is induced by a decrease in the marginal tax rates (from the current US taxes to the optimal

taxes).77 Second, the average marginal tax in the phase-in range for the case σ = 0.4 is only half

as large as for the case σ = 0.2, i.e., the optimal tax schedule is much flatter. Third, for the case

of a low elasticity, the optimal participation tax rate is almost constant between −17% to −18%

over the entire phase-in range. For the case of a high elasticity, in contrast, the participation

tax rate is substantially more negative with −65.3% for very low incomes at the bottom, and

increases strongly over the phase-in range to reach −13.6% at the phase-in endpoint. This also

suggests that the optimal income tax may involve a discontinuity at income zero, as argued

by Jacquet et al. (2013). The intuition behind the last two aspects comes from the planner’s

desire to implement the optimal compromise between labor supply distortions at both margins.

As explained in Section 6, the planner needs to use negative marginal taxes in order to reduce

the distortions at the extensive margin. When the intensive-margin elasticity is larger, negative

marginal taxes are more harmful because they create larger distortions. Hence, the planner

only uses them to a smaller extent and, consequently, has to accept a less desirable pattern

of extensive-margin distortions. In particular, this involves suboptimally high participation

taxes (and extensive-margin distortions) for very-low skill workers at the bottom. When the

intensive-margin elasticity is smaller, instead, the planner uses more negative marginal taxes to

implement a more desirable pattern of extensive-margin distortions.

Table 2: Maximal EITC ranges for different intensive-margin elasticities

πj ∈ [0.4, 0.5]
Intensive-margin elasticity (σ) 0.2 0.3 0.4
Phase-in endpoint [$] 14, 504 15, 016 15, 545
Phase-out endpoint [$] 31, 048 32, 144 31, 232
Maximum tax credit [$] 2, 580 1, 716 1, 309
Average MTR phase-in [%] −17.9 −11.5 −8.5
Average MTR phase-out [%] 14.2 9.8 7.4
PTR at bottom [%] −15.5 −10.2 −7.5
PTR at phase-in endpoint [%] −18.0 −11.4 −8.4
Unemployment benefit [$] 2, 998 2, 281 1, 859
Unemployment rate [%] 12.8 12.4 12.0

As in Section 7, I additionally investigate the maximal income ranges for which an EITC can

be rationalized given regular welfare functions with monotonically decreasing welfare weights.

Figure 2 provides key statistics of the optimal tax functions for the three alternative values of the

intensive-margin elasticity parameter σ. The EITC income ranges are remarkably similar, with

phase-in endpoints between $14, 500 and $15, 600 and phase-out endpoints between $31, 000

and $32, 300. In line with the previous arguments, marginal taxes are much higher in the low-

elasticity case than in the high-elasticity case. Reflecting this difference in phase-in rates, the

maximum tax credit for the case σ = 0.2 is almost twice as large as the maximum tax credit for

77 Besides, the phase-in range covers the first 43 skill groups in the high-elasticity case, but only the
first 40 skill groups in the low-elasticity case.
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the case σ = 0.4. In these simulations, the participation tax rates for all three cases are by and

large constant over the phase-in range, suggesting that the optimal tax systems do not involve

discontinuities. Finally, both the optimal unemployment benefit and the optimal unemployment

rate share are decreasing in the magnitude of the intensive-margin elasticity.

y [k$]

TP (y) [$]

TPM ′(y)

TPEL(y)
TPED(y)

EITC
0

−500

−1, 000
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Figure 6: Optimal participation taxes for different participation elasticity profiles.

Second, I simulate the optimal tax function for three different profiles of participation elas-

ticities. Again, I solve the optimal tax problem for a fixed sequence αD of welfare weights

that assigns a constant weight of 1.0475 to all workers in the first 39 skill groups, and convexly

decreasing weights to higher-skilled workers.78 The results are shown in Figure 6 and Table 3.

In particular, the solid green line shows the optimal participation tax TPM ′(y) for the benchmark

case, where participation elasticities vary between 0.5 for the lowest skill group and 0.4 for

the highest skill group (see equation 27 for details). The dashed blue line shows the optimal

participation tax TPED for a more decreasing profile of participation elasticities. Specifically, I

assume that participation elasticities vary between 0.6 for the lowest and 0.3 for highest skill

group. Hence, participation responses are concentrated more heavily on the lowest skill groups,

while the average participation elasticity is almost unchanged. Finally, the red dash-dotted line

shows the optimal participation tax TPEL for the case where labor supply responds less strongly

at the extensive margin, with participation elasticities ranging from 0.4 to 0.3.

As can be seen in Figure 6, these variations have only very limited effects on the optimal tax

schedules. Again, the implied tax credits are more than twice as large as under the current US

EITC for childless workers. Phase-in endpoints, phase-out endpoints and maximal tax credits

are almost identical across all three cases. There only appear to be two relevant differences.

First, the optimal unemployment benefit and the unemployment rate are larger for the case of

lower participation responses than for the two other cases. Correspondingly, tax schedule TL

attains higher levels for medium and high incomes. Intuitively, when participation responses are

78Again, sequence αD is constructed to be an element of AU39 for all three considered cases.
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smaller, a reduction in the unemployment benefit is less effective in reducing the unemployment

rate. Put differently, the planner can provide transfers to the unemployed at a lower efficiency

cost. Second, for the case of more concentrated participation responses, the participation tax

TPD is somewhat more negative in almost the entire phase-in range than for the two cases with

more homogeneous responses.79

Table 3: Simulation results for different participation elasticity profiles

σ = 0.3

Range of participation elasticities (πj) [0.3, 0.4] [0.4, 0.5] [0.3, 0.6]

Phase-in endpoint [$] 7, 474 7, 474 7, 474
Phase-out endpoint [$] 19, 352 19, 352 19, 352
Maximum tax credit [$] 1, 123 1, 119 1, 127

Average MTR phase-in [%] −13.4 −13.2 −12.5
Average MTR phase-out [%] 9.2 9.2 9.3

PTR at bottom [%] −34.7 −37.5 −47.8
PTR at phase-in endpoint [%] −15.0 −15.0 −15.1

Unemployment benefit [$] 3, 159 2, 858 3, 014
Unemployment rate [%] 15.2 13.1 13.7

Finally, Table 4 provides insights into how the maximum phase-in and EITC ranges depend

on the profile of participation responses. By and large, there are only negligible differences

in the key statistics for the considered profiles. In all three cases, the phase-in endpoints are

located between $14, 000 and $15, 000, the phase-out endpoints are located between $30, 000

and $32, 000, and the maximum tax credits range between $1, 600 and $1, 700. Again, the most

notable difference is that optimal unemployment benefits and unemployment rates are larger in

the case with low participation responses than in the other two cases.

Table 4: Maximal EITC ranges for different participation elasticity profiles

σ = 0.3

Range of participation elasticities (πj) [0.3, 0.4] [0.4, 0.5] [0.3, 0.6]

Phase-in endpoint [$] 14, 093 15, 016 15, 016
Phase-out endpoint [$] 30, 168 32, 144 32, 144
Maximum tax credit [$] 1, 612 1, 716 1, 716

Average MTR phase-in [%] −11.5 −11.5 −11.5
Average MTR phase-out [%] 9.8 9.8 9.8

PTR at bottom [%] −10.3 −10.2 −10.0
PTR at phase-in endpoint [%] −11.4 −11.4 −11.4

Unemployment benefit [$] 2, 388 2, 281 2, 244
Unemployment rate [%] 14.5 12.4 13.2

79In particular, the optimal participation tax is more negative for very low incomes, pointing to a
larger discontinuity at zero.
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B.4 Elasticity-based condition for violated IC constraints

Equation (19) in Section 5 provides a condition under which the solution to the relaxed problem

violates the upward IC constraint between two adjacent skill groups, expressed in terms of labor

supply elasticities and welfare weights. Note first that the participation threshold δj in skill

group j in the relaxed problem’s solution is defined by equation (17). Inserting this equation

into the upward IC constraint (33) between skill groups j and j + 1, we get

αj+1 − 1

Aj+1(δαRj+1)
− αj − 1

Aj(δαRj )
≤ −δ∗(ωj+1) + δ∗(ωj) + h(yαRj+1, ωj)− h(yαRj+1, ωj+1)

=
[
yαRj − h(yαRj , ωj)

]
−
[
yαRj+1 − h(yαRj+1, ωj)

]
=: Bj ,

where I use that δ∗k = yαRk −h(yαRk , ωk) for each k ∈ J . With ηk(c
αR, yαR) = Ak(δ

αR
k ), this gives

equation (19).

To rewrite Bj in terms of elasticities, I define ŷ(ω) = y ∈ R : hy(ŷ(ω), ω) = 1. Then, there

is a unique number ω̂ ∈ (ωj , ωj+1) such that

Bj =
[
h(yαRj+1, ωj)− yαRj+1

]
−
[
h(yαRj , ωj)− yαRj

]
=

∫ ωj+1

ωj

[
hy(ŷ(ω), ωj)− hy(yαRj , ωj)

]
dω

=
[
hy(ŷ(ω̂), ωj)− hy(yαRj , ωj)

]
(yαRj+1 − yαRj ) .

Using the definitions of εy,ω and εy,1−T ′ , an approximation of Bj is given by

Bj ≈

[
εy,ω(yαRj , ωj)

εy,1−T ′(y
αR
j , ωj)

hy(y
αR
j , ωj)

ω̂ − ωj
ωj

](
εy,ω(yαRj , ωj)y

αR
j

ωj+1 − ωj
ωj

)
.

A similar equation as (19) can be provided for the violation of the downward IC constraint

(29). In particular, after inserting (17) and δ∗k = yαRk − h(yαRk , ωk), I find that the downward

IC constraint between skill groups j and j + 1 is violated if

αj+1 − 1

ηj+1 (cαR, yαR)
<

αj − 1

ηj (cαR, yαR)
− B′j ,

where B′j =
[
yαRj+1 − h(yαRj+1, ωj+1

]
−
[
yαRj − h(yαRj , ωj+1

]
> 0.

B.5 Elasticity-based result for optimal phase-in range

By Proposition 3, the optimal allocation may upward distortions at the intensive margin for

skill groups 2 to k given well-behaved welfare functions if a set of conditions on the primitives

of the model (joint type distribution, type set, effort cost function) is satisfied. As argued in

Section 5, there exists a unique threshold group k̄ such that these conditions are met if and

only if k ≤ k̄. The location of threshold k̄ depends on the type distribution and the effort

cost function. Unfortunately, these quantities are not directly observable. They are related to

quantities such as labor supply elasticities and skill shares that can be estimated empirically.
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In the following, I derive a necessary condition for the optimality of negative marginal taxes

in skill groups 2 to k that is expressed mainly in terms of these observable quantities. Thereby,

I also provide an upper bound on threshold k̄ that can be computed from empirical estimates.

The derivation of this result makes use of the following condition, which imposes a lower bound

on the income elasticity with respect to the retention rate and an upper bound on the income

elasticity with respect to the skill type (complementing Condition 3).

Condition 4. There are two numbers µ3 ∈ (0, µ1] and µ4 ∈ [µ2,∞) such that, for each y > 0

and ω > 0, εy,1−T ′(y, ω) ≥ µ3 and εy,ω(y, ω) ≤ µ4.

Lemma 25. Let Condition 4 be satisfied. For any k ∈ {2, . . . , n− 1}, there can only exist

regular combinations (Ψ, γ) for which ᾱ ∈ AUk if

k∑
j=1

fj +

n∑
j=k+1

fj

[
1−Gj(δkj )

]
<

1− β
n−1

β̄k−1 − 1

n∑
j=mk

fjGj(δ
k
j ) ,

where vector (δkj )nj=1 is given as in Proposition 3 and threshold mk satisfies

ln

(
ωmk

ωk

)
>

µ3

2µ2
4 ηk

β̄k−1 − 1

yαR
mk

.

By Lemma 25, the share of workers with upward distortions at the intensive margin (skill

groups k and lower) has to be small enough, compared with the share of highly skilled workers

in the optimal allocation. Thereby, it supports the interpretation of Proposition 3 provided in

Section 5. More precisely, Lemma 25 first compares the combined shares of unemployed agents

and workers in skill group 1 to k on the one hand, and the share of workers in a threshold

skill group mk and higher, weighted by a factor that only depends on the fixed-points identified

in Lemma 6, on the other hand. Second, Lemma 25 provides an upper bound on the relative

distance between k and the threshold skill group mk that depends on the intensive-margin and

extensive-margin labor elasticities and one of the fixed-points mentioned above. (It should be

noted that the fixed-points β̄k−1 and β
n−1

are functions of the labor elasticities and the relative

distances between adjacent skill types themselves.) It is easy to see that these conditions can

only be satisfied if skill level ωk is smaller enough, both in terms the share of workers with skill

ωk and lower and in terms of the ratio between skill ωk and the average skill in the population.

Put differently, there exists a unique threshold k̃ such that the conditions in Lemma 25 are

satisfied if and only if k < k̃. This threshold k̃ is hence an upper bound on the critical value k̄

that is implied by Proposition 3.

Finally, note that the threshold group mk (for each k) and the critical values k̄ and k̃ can

be computed explicitly if one has more exact information about the labor supply elasticities,

the skill distribution and the underlying primitives of the model. In particular, this is done

numerically for the calibrated model in Section 7, and analytically for the example considered

in Subsection B.6 below (for the limit case where the discrete skill set converges to an interval).
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B.6 Limit result for continuous skill sets

All theoretical results have been derived under the assumption that skill set Ω is given by some

discrete set {ω1, . . . , ωn}, while the fixed cost set ∆ is given by an interval
[
δ, δ̄
]
. In particular,

the formal proofs for Lemma 6 and Propositions 2 and 3 exploit the discreteness of Ω. Besides,

the results are relatively general as I have not imposed any functional forms assumptions (except

for the quasi-linearity of utility in consumption). Still, one might ask whether the central insight

of this paper – the potential optimality of an EITC with negative marginal taxes – extends to

a model with a continuous skill set as in Jacquet et al. (2013) and many other related papers.

Under the level of generality maintained in the analysis above, this question cannot be clarified.

In the following, however, I show the optimality of negative marginal taxes indeed extends

to a continuous skill set for an example with simple, commonly used functional forms. In

particular, I impose the following set of assumptions.

Condition 5. The economy has the following properties:

(i) The effort cost function is given by h(y, ω) = 1
1+1/σ

( y
ω

)1+1/σ
with σ > 0,

(ii) the skill space is given by the finite set {ω1, ω2, . . . , ωn} with constant relative distances
ωj+1

ωj
= a > 1 for each j ∈ J/ {n},

(iii) the fixed cost space is given by the interval
[
0, δ̄
]
, and

(iv) for each j ∈ J , the conditional distribution Gj of fixed costs is given by a uniform distri-

bution on
[
0, δ̄j

]
, with δ̄j ≤ δ̄ for all j ∈ J .

The first two parts of Condition 5 have already been imposed for the calibration in Section

7. Part (i) implies that the elasticity of output (or gross income) y with respect to the retention

rate is equal to parameter σ for all workers and all admissible tax functions. Part (ii) plays a

crucial role for the following exercise, because parameter a can be seen as a measure of how

“dense” the skill set is. In particular, it allows to consider the limit case where a converges to

1, i.e., the skill set converges to an interval. Parts (iii) and (iv) imply that fixed cost types are

uniformly distributed in each skill group, in contrast to the logistic distributions used in Section

7. Importantly, this assumption allows me to obtain closed-form expressions of the optimal skill-

specific participation thresholds δαR1 , . . . , δαRn and the fixed-points β
j
, β̄j established in Lemma

6. Ultimately, this simplification enables me to derive analytical limit results. The drawback of

part (iv) is that participation elasticities are larger than 1, which is at odds with most of the

available empirical evidence. Besides, Condition 5 allows to match all other empirical moments

targeted in Section 7. Note also that Conditions 1, 2 and 3 in Section 4 are satisfied for all

parameter constellations under Condition 5.

In the following, I am interested in studying whether an EITC with negative marginal

taxes remains optimal for some well-behaved welfare function if the relative distance a between

adjacent skill types converges to 1, i.e., the discrete skill set Ω = {ω1, . . . , ωn} converges to the

interval [ω1, ωn]. Formally, I want to investigate whether there exist regular combinations (Ψ, γ)

such that ᾱ ∈ AUk for some k ∈ J in the limit case a → 1. Additionally, I am interested in
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whether the skill range (and the corresponding income range) with potentially optimal marginal

taxes shrinks, or even disappears, in this limit case. For this purpose, I reconsider Lemma 25,

which was established in Appendix B.5, for an economy that satisfies Condition 5.

Lemma 26. Let Assumption 5 be satisfied and consider the limit case a → 1. For any σ > 0

and ωk ∈ (ω1, ωn), there can only be regular combinations of (Ψ, γ) such that ᾱ ∈ AUk if

k∑
j=1

fj +

n∑
j=k+1

fj

[
1−Gj(δkj )

]
<

n∑
j=mk

fjGj(δ
k
j ) , (43)

where mk is defined implicitly by yαR
mk

= 2yαRk .

By Lemma 26, the optimal allocation can involve upwards distortions at the intensive margin

for a substantial set of low-skill workers even in the limit case where Ω converges to a continuous

set. To see this, consider some skill type ωk ∈ (ω1, ωn). Lemma 25 implies that the optimal

allocation can involve upwards distortions for all workers with skills in (ω1, ωk] if and only if

the share of high-skill workers with incomes above 2yαRk is larger than the share of agents with

incomes below yαRk (unemployed agents and low-skill workers). Hence, the optimal income tax

can only involve negative marginal taxes for, first, a minority of agents and, second, for agents

with earned incomes below the population average. There is no doubt that these conditions

limit the optimal phase-in range, i.e., the subset of agents facing optimally negative marginal

taxes, making more transparent the restrictions that are already present in Proposition 3.

However, the potential optimality of negative marginal taxes clearly does not vanish or shrink to

a economically irrelevant subset of low-skill workers. Interestingly, this insight does not depend

on parameter σ, which determines the level of the (intensive-margin) elasticity of income with

respect to the retention rate.

B.7 Definition and illustration of labor supply distortions

The analysis above investigates the labor supply distortions in the optimal allocation, as defined

in Subsection 3.2. The characterization of these distortions is based on the following thought

experiment, which I illustrate in Figures 7 and 8 below. Consider an initial allocation in which

agent i’s bundle is given by
(
ci, yi

)
≥ 0. Now consider providing agent i with a different bundle

(c̃, ỹ) ≥ 0 such that ỹ − yi = c̃ − ci 6= 0. The set of these potential deviations is given by a

straight line through
(
ci, yi

)
with slope equal to 1, the economy’s marginal rate of transformation

between consumption and output. Agent i’s labor supply is said to be distorted if there is a

bundle (c̃, ỹ) on this line that i strictly prefers to
(
ci, yi

)
.

First, it might be possible to increase i’s utility through a marginal deviation from
(
ci, yi

)
.

This will be the case if and only if i’s marginal rate of substitution, hy
(
yi, ωi

)
, differs from 1.

If hy
(
yi, ωi

)
< 1, i would strictly prefer an output-increasing deviation. Then, i’s labor supply

is said to be downwards distorted at the intensive margin. Correspondingly, if hy
(
yi, ωi

)
> 1, i

would strictly prefer an output-decreasing deviation, and i’s labor supply is said to be upwards

distorted at the intensive margin.
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Second, it might be possible to increase i’s utility through a large deviation from
(
ci, yi

)
that

changes his participation status (from zero output to positive output or vice versa). Consider

an initial allocation with yi = 0 and the deviation to bundle
(
ci + ỹ, ỹ

)
for some ỹ > 0. Agent i

would be strictly better off with the new bundle than with his initial bundle if and only if i’s total

costs of providing output ỹ are below the additional utility from consuming ỹ, h
(
ỹ, ωi

)
+δi < ỹ.

Hence, i’s labor supply is said to be downwards distorted at the extensive margin if both yi = 0

and δi < δ∗(ωi) := maxy>0 y − h(y, ωi).

Correspondingly, consider an initial allocation with yi > 0. Agent i would be strictly better

off with bundle
(
ci − yi, 0

)
than with his initial bundle if and only if i’s total costs of providing

output yi exceed the utility from consuming yi, h
(
yi, ωi

)
+ δi > yi. Hence, i’s labor supply is

said to be upwards distorted at the extensive margin if both yi > 0 and δi > yi − h
(
yi, ωi

)
.

By Lemma 1, it is possible to characterize the labor supply distortions for the agents in

each skill group j ∈ J simultaneously. In particular, labor supply in skill group j is said to be

distorted at the intensive margin if the marginal rate of substitution h(yj , ωj) differs from one

for all working agents with skill type ωj . Similarly, labor supply in skill group j is said to be

distorted at the extensive margin if the skill-specific participation threshold δj is either located

below δ∗(ωj) (downward distortion) or above yj − h(yj , ωj) (upward distortion).

The following Figures 7 and 8 illustrate these definitions of labor supply distortions graph-

ically. In each figure, point A marks the initial bundle (ci, yi) allocated to agent i. The sets of

hypothetical deviations are given by the solid lines through A and B. The indifference curves

of Agent i are given by the union of the dashed line and point Z (in figure 7) and the union of

the dashed line and point A (in figure 8), respectively, corresponding to the discontinuity in i’s

utility due to the fixed cost δi.

y

c

A
ci

yi

h
(
yi, ωi

)
δi

yi

0

(
yi + d, ci + d

)ICi

Z

B

Figure 7: Labor supply distortions, example 1.

In Figure 7, i’s initial output is strictly positive, yi > 0. In point A, the slope of the indif-

ference curve is below 1, the marginal rate of substitution. Hence, i’s utility could be increased

by moving slightly upwards the solid line. Alternatively, i’s utility could also be increased by

jumping downwards to point B, where output provision is zero. Hence, i’s labor supply is both
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downwards distorted at the intensive margin and upwards distorted at the extensive margin.80

In Figure 8, i does not provide output initially, yi = 0. Jumping upwards to point B with

positive output y∗(ωi) = arg maxy>0

{
y − h(y, ωi)

}
would increase i’s utility, as B is located

above the indifference curve. Hence, i’s labor supply is downwards distorted at the extensive

margin.

y

c

A

B

(
d, ci + d

)ICi

h
(
y∗
(
ωi
)
, ωi
)

δi

y∗
(
ωi
)

ci + y∗
(
ωi
)

y∗
(
ωi
)

yi = 0

ci

Figure 8: Labor supply distortions, example 2.

B.8 Decomposition and illustration of deadweight loss

Following the literature, I formally define the deadweight loss in an implementable allocation

(c, y) as

DWL(c, y) =
n∑
j=1

fj

∫ δ∗(ωj)

δ
gj(δ) [δ∗(ωj)− δ] dδ

−
n∑
j=1

fj

∫ δj

δ
gj(δ) [yj − h(yj , ωj)− δ] dδ .

By construction, the deadweight loss measures the maximum increase in the difference between

the consumption possibilities that result from providing labor and the total cost of providing

labor that can be achieved by moving from allocation (c, y) to some other feasible allocation. As

usual, DWL(c, y) is minimized and equal to zero if labor supply in all skill groups is undistorted

at both margins, i.e., if hy(yj , ωj) = 1 and δj = δ∗(ωj) = maxy>0 y − h(y, ωj) for every j ∈ J .

The overall deadweight loss can also be decomposed as

DWL(c, y) =

n∑
j=1

fjGj(δj) [δ∗(ωj)− yj + h (yj , ωj)]

+

n∑
j=1

fj

∫ δ∗(ωj)

δj

gj(δ) [δ∗(ωj)− δ] dδ ,

80In a model without fixed costs as in, e.g., Mirrlees (1971), this would be impossible by construction.
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where the first term captures the deadweight loss from distortions at the intensive margin and

the second term captures the deadweight loss from distortions at the extensive margin (across

all skill groups).

Figure 9 below illustrates the deadweight loss from distortions in skill group j and its

decomposition graphically. It depicts the quantity Gj(δj) of labor of skill type ωj , and the

labor supply Sj and labor demand Dj (measured in mass of workers) for an allocation that

involves bundle (yj , δj). D∗j depicts the labor demand that would result without distortions

at the intensive margin, i.e., if each worker would provide efficient output. In particular, the

figure depicts a case where labor supply in skill group j is downwards distorted at both margins,

hy(yj , ωj) < 1 and δj < yj − h(yj , ωj) < δ∗(ωj). The red shaded area (Li) depicts the efficiency

loss due to intensive-margin distortions, the blue-shaded area (Le) depicts the efficiency loss

due to extensive-margin distortions in this skill group.

Gj(δ)

δ

δ

δ̄ Sj

δ∗(ωj) D∗j
yj − h(yj , ωj) Dj

δj

Gj(δj)

A

E
Li

Le

Figure 9: Illustration of deadweight loss in skill group j.

B.9 Monotonicity of social weights

In Subsection 3.4, the endogenous marginal social weights are defined in equations (9) and (10).

In the following, I assume that all type-specifid weight are equal, i.e., that γ(ω, δ) = 1 for all

(ω, δ) ∈ Ω ×∆. Then, concavity of Ψ ensures that ᾱ0 > ᾱj for all j ∈ J . For j ≥ 1, however,

the endogenous weight sequence ᾱ is only ensured to be decreasing if additional conditions on

the joint type distribution K are met.

Lemma 27. If Ψ is strictly concave and γ is constant over Ω×∆, Gj dominates Gj+1 in the

sense of first-order stochastic dominance for all j ∈ J−n and Condition 1 holds, ᾱj > ᾱj+1 for

all j ∈ J−n in all implementable allocations.

In the following, I provide a simple example to demonstrate that the concavity of Ψ per se

does not guarantee decreasing social weights.

Example 1. Assume that n > 2, ω1 = 1, ω2 = 3/2, δ = 0, δ̄ = 10, h(y, ω) = 1
2

( y
ω

)2
,

Ψ(x) = x1/2, γ(ω, δ) = 1 for all (ω, δ) ∈ Ω×∆, g1(δ) = 0.1 for all δ ∈ ∆, g2(δ) = ε for δ ∈ [0, 1]

and g2(δ) = 1−ε
9 for δ ∈ (1, 10].
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Note that function Ψ is strictly concave. Fixed costs types are uniformly distributed in

skill group 1, and piecewise uniformly distributed in skill group 2. For ε below (above) 0.1, G2

dominates (is dominated by) G1 in the sense of first-order stochastic dominance.

Consider the allocation (c′, y′) with c′0 = 0.1, (c′1, y
′
1) = (1.1, 1), (c′2, y

′
2) = (9/4 + .1, 9/4),

δ′1 = 1/2 and δ′2 = 9/4. Note that this allocation satisfies both IC constraints between workers

with skill types ω1 and ω2 with strict inequalities. The social weights in this allocation are given

by ᾱ0(c′0) ≈ 1.581/z, ᾱ1(δ′1, c
′
0) ≈ .917/z and ᾱ2 ≈ (1.265 + 44.272ε)/((1 + 71ε)z), where z > 0

is again a normalizing parameter. I find that ᾱ2 > ᾱ1 if and only if ε is below some threshold

ε̂ ≈ 0.0167. In this example, the social weights are hence locally increasing if G2 first-order

stochastically dominates G1 “sufficiently much”. Loosely speaking, the workers in skill group

2 are on average worse off than the workers in skill group 1 in this case, because they have on

average much higher fixed costs.

B.10 Validity of Conditions 1 and 2 for common functions

The theoretical results are valid whenever the skill-specific fixed cost distributions satisfy Con-

ditions 1 and 2. In the following, I show that these conditions indeed hold for many commonly

used functional forms. First, Condition 1 (i) requires the fixed cost distribution Gj to be

log-concave for each j ∈ J .

Observation 1. For any j ∈ J , Condition 1 (i) is satisfied if Gj is given by

(a) a uniform distribution on
[
δj , δ̄j

]
;

(b) a logistic distribution of the functional form (28) with location parameter ψj ∈ R and scale

parameter ρj /∈ 0;

(c) a Pareto distribution with scale parameter (minimum value) δj > 0 and shape parameter

kj > 0;

(d) a log-normal distribution with location parameter ξj ∈ R and scale parameter σj > 0;

(e) a normal distribution with mean ξj ∈ R and standard deviation σj > 0.

Condition 1 (ii) refers to the co-variation of distributions Gj and Gj+1 for each pair of skill

groups j and j + 1. In particular, it assumes that the cdf hazard rates can be monotonically

ordered for each δ ∈ ∆, Aj(δ) ≥ Aj+1(δ). In general, this assumption is neither stronger nor

weaker than the assumption that Gj+1 first-order stochastically dominates Gj . Within each of

the families of distribution functions considered here, however, both properties are equivalent.

Observation 2. For any j ∈ J , Condition 1 (ii) is satisfied and Gj+1(δ) ≥ Gj(δ) for all δ ∈ ∆

if the fixed cost distribution Gj and Gj+1 are given by

(a) uniform distributions with upper endpoints δ̄j ≥ δ̄j+1 and lower endpoints δj = δj+1;

(b) logistic distributions of form (28) with location parameters ψj ≥ ψj+1 and scale parameter

ρj = ρj+1, or scale parameters ρj ≥ ρj+1 and location parameters ψj = ψj+1;
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(c) Pareto distributions with shape parameters 0 < kj ≤ kj+1 and scale parameters (minimum

values) δj = δj+1 > 0;

(d) log-normal distributions with location parameters ξj ≥ ξj+1 ∈ R and scale parameters σj =

σj+1 > 0;

(e) normal distributions with expected values ξj ≥ ξj+1 ∈ R and standard deviations σj =

σj+1 > 0.

Finally, Condition 2 requires the pdf hazard rate aj(δj) to be weakly decreasing in δ and

weakly increasing in ω, but only at a sufficiently small rate compared to the derivative of the

cdf hazard rate Aj(δj).

Observation 3. For any j ∈ J , Condition 2 is satisfied

(a) for all δ ∈ ∆ if Gj and Gj+1 are given by uniform distributions with upper endpoints

δ̄j ≥ δ̄j+1 and identical lower endpoints δj = δj+1;

(b) for all δ ∈ ∆ if Gj and Gj+1 are given by logistic distributions of form (28) with location

parameters ψj ≥ ψj+1 and identical scale parameters ρj = ρj+1, or with scale parameters

ρj ≥ ρj+1 and identical location parameters ψj = ψj+1;

(c) for all δ below some threshold level zj > ξj if Gj and Gj+1 are given by normal distributions

with means ξj ≥ ξj+1 and identical standard deviations σj = σj+1 > 0.

Condition 2 is not satisfied if Gj and Gj+1 are given by Pareto or log-normal distributions. In

particular, Condition 2 (i) is violated: the pdfs of these distribution functions are not log-concave

for any combination of parameters. It is possible, however, to provide a relaxed version of the

condition that (a) is satisfied for these distribution functions in many cases and (b) continues

to ensure the validity of Lemma 6 and all subsequent results. The details are available upon

request.

B.11 Illustration: Optimally binding upward IC constraints

By Proposition 2, optimal labor supply in all skill groups j ∈ {2, . . . , k} is upwards distorted

at the intensive margin for every social weight in the set AUk . In particular, the formal proof

in Appendix A shows that the upward IC constraint between skill groups j and j + 1 ≤ k will

always be binding in the optimal allocation. With respect to the IC constraints between skill

groups k and k + 1, there are multiple possible constellations. In particular, the downward

IC constraint between workers in both skill groups may be binding or slack in the optimal

allocation. In both cases, however, labor supply in skill group k is upwards distorted at the

intensive margin.

Figure 7 illustrates both cases in panels 7a and 7b for the case k = 2. In both panels, the

filled circles mark the bundles allocated to workers with skill types ω1, ω2 and ω3 in the solution

to the relaxed problem. The indifference curves corresponding to these bundles are drawn as

solid lines. As can be seen, workers with skill type ω1 prefer the bundle (cαR2 , yαR2 ) to the bundle
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(cαR1 , yαR1 ), while workers with skill type ω3 are indifferent between their own bundle and the

bundle designed for workers with skill type ω2.

c

y

uR1uA1

uR2

uA2

uR3

yαR1 yαR2 yαR3
yα2

a: The case with a slack downward IC
constraint

c

y

uR1uA1

uR2
uA2

uR3

yαR1 yαR2 yαR3yA2yZ2

b: The case with a binding downward IC
constraint

Figure 7: Illustration of binding upward IC constraint for α ∈ AU

Consider an intermediate problem A that takes into account only the IC constraints between

the workers with the two lowest skill types (see proof to Proposition 2). The solution to this

problem is represented by the empty circles and the corresponding dashed indifference curves

for workers with skill types ω1 and ω2. As can be seen, the utility of workers in skill group 1 is

higher than in the solution to the relaxed problem, while the utility of workers in skill group 2 is

lower. The output provided by workers in skill group 2 is strictly upwards distorted, yA2 > yαR2 .

In the case depicted in the left panel, the solution to the intermediate problem A satisfies the

downward IC constraint between workers in skill groups 2 and 3. In this case, the solution to

intermediate problem A also solves the non-relaxed problem of optimal taxation. In the case

depicted in the right panel, the solution to intermediate problem A violates the downward IC

constraint between the workers in groups 2 and 3. In the solution to the non-relaxed problem

(not shown), this downward IC constraint will hence be binding. The optimal output level yα2

will nevertheless be upwards distorted. More precisely, it will always be located between the

output levels yA2 and yZ2 (corresponding to the intersection point Z between the red dashed

indifference curve of the workers in skill group 2 and the green indifference curve of the workers

in skill group 3). Which of the two cases prevails, depends in a non-trivial way on the joint

type distribution K, the effort cost function h and the complete sequence of social weights α.

B.12 The efficient funding problem

Lemma 7 shows that an EITC with negative marginal taxes and negative participation taxes

represents the most efficient scheme to redistribute some fixed amount R > 0 from high-income

earners to the unemployed and the working poor. One driving force of this result is the planner’s

desire to smooth deadweight losses over both margins and the entire skill distribution. Another

crucial ingredient is the planner’s desire for redistribution, however: An EITC is only the most
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efficient tax system conditional on some redistribution from high incomes to low incomes taking

place.

To clarify this point, I contrast the results of the efficient redistribution problem with the

results of a structurally similar problem that does not involve any redistribution. In particular,

assume that the social planer faces an exogenous revenue requirement B > 0, which he has

to fund by imposing taxes. Assume further that the unemployed do not have any non-labor

income and that their consumption has to be non-negative. Hence, the social planner cannot use

lump-sum taxes, but must rely on distortionary income taxation. Now, consider the problem to

minimize the deadweight loss from labor supply distortions (5) over the set of feasible allocations,

subject to the budget constraint that the tax revenue is weakly larger than B > 0,

n∑
j=1

fjGj(δj)(yj − cj)−
n∑
j=1

fj [1−Gj(δj)] c0 ≥ B , (44)

to the non-negativity constraint c0 ≥ 0, and to the incentive compatibility constraints between

all agents with identical skills (14), between all unemployed agents (15), and between the workers

in the lowest two skill groups, (22) and (23). I henceforth refer to this program as the efficient

funding problem and denote its solution by the vectors cF , yF and δF . The following lemma

identifies the labor supply distortions in this solution.

Lemma 28. Consider an exogenous revenue requirement B > 0 such that a solution (cF , yF )

to the efficient funding problem exists.

(i) Output yF is downwards distorted at the extensive margin in all skill groups j ∈ J .

(ii) There is a number aF > 1 such that, if ω2/ω1 ∈
(
1, aF

)
, output yF is downwards distorted

at the intensive margin in skill group 1.

By Lemma 28, the most efficient tax scheme to fund a public budget does not involve upward

distortions in labor supply. In contrast, it involves downward distortions at both margins and a

binding downward IC constraint between the two lowest skill groups. Importantly, constrained

efficiency cannot be maximized by conditional lump-sum taxes on all employed agents. Instead,

the efficiency-maximizing taxes are increasing in labor income even though the planner has no

redistributive concerns whatsoever. This result holds whenever, first, the distance between skill

groups 1 and 2 is sufficiently small and, second, the problem has solution given the level of

B. The first qualification is again related to the assumption of a discrete skill set; its role is

explained in Section 6 above. The second qualification has to be made because the achievable

tax revenue is limited due to Laffer curve effects. Note that this pattern generalizes to a version

of the efficient funding problem that contains the entire set of local IC constraints along the

skill dimension: In that version of the problem, optimal output is downwards distorted at the

intensive margin in all skill groups 1 to n− 1, whenever the relative difference between all pairs

of adjacent skill groups is sufficiently small. Besides, optimal output continues to be downwards

distorted at the extensive margin in all skill groups j ∈ J .

The intuition behind Lemma 28 again comes from the trade-off between intensive efficiency

and extensive efficiency. To start with, the optimal transfers to the unemployed are equal to
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zero, i.e., the non-negativity constraint is binding. Consequently, the public budget can only be

funded if the workers in some skill groups pay strictly positive taxes, which induce downwards

distortions at the extensive margin. As in the efficient redistribution problem, the minimization

of deadweight losses from distortions at the extensive margin requires to satisfy an inverse

elasticity rule, this time given by

δ∗(ωj)− δFj = yFj − cFj =
λF

1 + λF

Gj(δ
F
j )

gj(δFj )
> 0 (45)

for all skill groups j ∈ J . In line with standard arguments, minimizing the deadweight loss over

all types of labor requires to, first, set strictly positive participation taxes for all skill groups and,

second, set higher taxes for skill groups that respond less elastically at the participation margin.

As the participation elasticities are strictly decreasing over the skill dimension by Lemma 2,

the efficient funding scheme involves strictly increasing taxes over the entire income range.

With a sufficiently dense skill set, the allocation defined by (45) violates all local downward

IC constraints. Hence, the planner cannot satisfy the inverse elasticity rule (45) and avoid

intensive-margin distortions at the same time. Put differently, he has to introduce downward

distortions at the intensive margin in order to relax these constraints and, thereby, reduce the

distortions at the extensive margin.

B.13 Generalized welfare weights and poverty alleviation

In this section, I discuss whether an EITC is the optimal policy for alleviating poverty. Following

Mirrlees (1971), optimal income taxation is commonly studied under the assumption that the

social objective is given by a (utilitarian) welfare function (see Weinzierl 2014 for a recent

critique). As an alternative, Kanbur et al. (1994) as well as Besley & Coate (1992, 1995)

suggest the goal of alleviating poverty as measured by the available income. They advocate this

objective as being more consonant with public debates and, consequently, as providing better

insights into real-world policy choices. In particular, they argue that neither policy-makers nor

taxpayers seem to value the leisure enjoyed by the poor (which is an argument of standard

utility functions), but rather seem to focus on income as a more visible sign of poverty (see,

e.g., Besley & Coate (1995): 189 and Kanbur et al. (1994): 1615-1616).

Support for this view comes from the recent public debate surrounding a potential expan-

sion of the EITC for childless workers. Most prominently, President Barrack Obama and Paul

Ryan, then Republican Chairman of the House of Representative Budget Committee, indepen-

dently proposed to expand the EITC by doubling the phase-in and phase-out rates, raising the

phase-out start and the eligibility threshold, and relaxing age restrictions for childless workers

(Executive Office 2014, House Budget Committee 2014). The Obama proposal emphasizes the

goal to reduce poverty for childless low-income workers. In particular, the proposal estimates

that “the increase in the credit would lift about half a million people above the poverty line and

reduce the depth of poverty for 10 million more” (Executive Office 2014: 2). It also criticizes

that the current US tax code pushes childless workers with low incomes ”into or deeper into
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poverty” (Executive Office 2014: 3), both directly and indirectly through discouraging work.81

The Ryan proposal suggests a number of reforms to reduce poverty and increase economic self-

sufficiency. It argues that the EITC is the most successful program in fighting poverty among

families, and that its expansion would significantly reduce poverty among childless workers.

The Ryan proposals also emphasizes that an EITC expansion would provide greater incentives

for people to work and “earn enough money to place them above the poverty line” (House

Budget Committee 2014: 7). A number of further proposals provide similar arguments for an

even more generous EITC expansion, emphasizing the goals of lifting people above the poverty

line, reducing the depth of poverty for others and, in particular, eliminating the possibility

that low-income workers are taxed into poverty. For example, such poverty-related arguments

were made to support two recent proposals for EITC expansion, introduced in the House of

Representatives in February 2017, and in the Senate in June 2017.82

I continue by sketching the most common poverty measures and their formalization in

optimal tax problems. Let c̄ denote the poverty line, expressed in terms of consumption or

available income (after tax and transfers).83 Foster et al. (1984) introduce a class of poverty

measures given by

Pa(c, c̄) =
1

n

n∑
i=1

(
c̄− ci
c̄

)a
1ci≤c̄ .

where n is the number of agents in the population and ci is agent i’s available income. For a = 0,

this measure is equal to the poverty rate or head count ratio, the share of a population with

available incomes below c̄. For a = 1, it is equal to the poverty gap, the average (percentage)

shortfall of available income from the poverty line. In contrast to the poverty rate, the poverty

gap also accounts for the intensity (depth) of poverty. For a > 1, the measure assigns higher

weights to larger shortfalls from the poverty line. Institutions such as the World Bank and the

United Nations commonly use the first two measures, the poverty rate and the poverty gap.

Kanbur et al. (1994) were the first to study optimal income taxation under the goal of poverty

alleviation instead of welfare maximization. They formalize the objective of poverty alleviation

by using what they call a generalized poverty gap measure (with a > 1). For an intensive-

margin model, they find that the optimal marginal tax might be negative at incomes below the

poverty line. Numerical simulations show large positive marginal taxes to be optimal even at

the very bottom, however. They also point out that their formalization of poverty alleviation

is inconsistent with the Pareto principle, because it fails to account for the agents’ disutility

of providing output instead of enjoying leisure. To reconcile the poverty gap criterion with

the Pareto principle, Saez & Stantcheva (2016) suggest to apply their approach of generalized

welfare weights by setting welfare weights equal to αp for all agents with consumption below

the poverty line c̄, and equal to αnp ∈ [0, αp) for all agents with consumption above c̄. Note

81Besides, the proposal argues that an EITC expansion would increase employment rates, and that
this might benefit society through positive external effects such as increasing marriage rates, supporting
child outcomes and reducing incarceration rates (Executive Office 2014: 9).

82For the details of both bills, see https:// www.congress.gov/ bill/ 115th-congress/ house-bill/ 822 and
https:// www.congress.gov/ bill/ 115th-congress/ senate-bill/ 1371 .

83Sometimes, the poverty line is also defined in terms of pre-tax income.
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that, with intensive-margin responses alone, the optimal marginal taxes for this criterion are

strictly positive both below and above the poverty line c̄ (Saez & Stantcheva 2016).84

Finally, I show that the optimal income tax can be given by an EITC when the social

objective is to reduce the poverty gap. For comparison, recall that Proposition 3 shows the

existence of well-behaved welfare functions for which the endogenous marginal welfare weights

are an element of AUk if (i) the relative distance between the first k skill levels is sufficiently

small, and (ii) the share of highly productive workers is sufficiently large. In the following, I

demonstrate that a similar result holds for the endogenous welfare weights that arise if the social

objective is to reduce the poverty gap. In particular, I use the following generalized version (46)

of the welfare weights suggested by Saez & Stantcheva (2016):

α̃j(cj) =

{
αp for cj ≤ c̄

αp − q(cj) for cj > c̄ .
(46)

Function qj determines how the generalized weights decrease for workers with available income

above the threshold line. Intuitively, function q measures the planner’s reluctance to cut workers’

consumption to levels very close to the poverty line c̄, and how this reluctance fades out with

increasing distance from c̄. Note first that, for the calibrated model in Section 7, the weight

sequence αA ∈ AUk can be closely approximated by setting poverty alleviation weights according

to (46), with the simple functional form q(cj) = [(cj− c̄)/cj ]ρ(αp−αnp), given parameter values

c̄ = $7.022, αp = 1.05, αnp = 0.96 and ρ = 1.6.

More generally, the following proposition provides conditions under which, for an objective

formalized by two numbers c̄, αp and a monotonically increasing function q : (c,∞)→ (0, αp],

the resulting sequence α̃ of generalized weights is an element of the set AUk .

Proposition 8. Fix three numbers k ∈ {2, . . . , n− 1}, αp ∈ (1, χ) and c̄ ∈
(
clfk , c

lf
k+1

)
. There

exist a number mk ≥ k + 1 and two vectors (φkj )
n
j=k+1, (δkj )nj=k+1 with φkj+1 ≥ φkj , φk

mk
> 1 ≥

φk
mk−1

and δkj ∈
(
δ, δ̄
)

for all j ∈ {k + 1, . . . , n} such that, if

(i) ωj+1/ωj < min
{
au1(αp), . . . , a

u
k−1(αp)

}
for all j ∈ {1, . . . , k − 1},

(ii) n ≥ mk and

(iii)
∑n

j=k+1 fjGj(δ
k
j )φkj ≥ 1,

there exists a monotonically decreasing function q : (c̄,∞)→ (0, αp) for which α̃ ∈ AUk .

Finally, consider the simple formalization of poverty alleviation goals suggested by Saez

& Stantcheva (2016), where α̃(cj) = αnp for any cj > c̄. For this formalization, the relaxed

problem’s solution would continue to satisfy the first condition in Definition 1, i.e., to violate the

upward IC constraints among the first k− 1 skill groups. However, if the skill set is sufficiently

84As an alternative, Saez & Stantcheva (2016) suggest to formalize the criterion of poverty rate mini-
mization by assigning positive weights to all agents with consumption exactly equal to c̄, and zero weights
to all agents with lower or higher consumption. For these non-monotonic weights, the optimal marginal
tax at the bottom can be negative, in line with the results by Choné & Laroque (2010) and Brett &
Weymark (2017).
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dense in this range, the second condition in Definition 1 will be violated, i.e., the relaxed

problem’s solution will violate the downward IC constraints between all higher skill groups. In

that case, it depends on the details of the joint type distribution, the effort cost function and

the levels of αp, αnp and c̄ whether or not the optimal allocation involves upwards distortions

at the intensive margin. Given the similarity to the optimal tax problem studied by Brett &

Weymark (2017), the optimal allocation can be expected to involve upwards distortions for a

set of low-skill workers, downwards distortions for a set of high-skill workers and bunching for a

non-empty set of intermediate skill types. In this case, an EITC would continue to be optimal.
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