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Abstract

On average, “young” people underestimate whereas “old” people overesti-
mate their chances to survive into the future. Such subjective survival beliefs
violate the rational expectations paradigm and are also not in line with models
of rational Bayesian learning. In order to explain these empirical patterns in
a parsimonious manner, we assume that self-reported beliefs express likelihood
insensitivity and can therefore be modeled as non-additive beliefs. In a next
step we introduce a closed form model of Bayesian learning for non-additive
beliefs which combines rational learning with psychological attitudes in the
interpretation of information. Our model gives a remarkable fit to average sub-
jective survival beliefs reported in the Health and Retirement Study.
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1 Introduction

Dynamic economic models are based on forward looking behavior of economic agents.

In the context of life-cycle models, an individual’s consumption and savings decision

depends on her subjective beliefs about future interest rates, wage rates and the

likelihood of dying. According to these models, individuals have beliefs about such

variables and use these beliefs to make decisions today. Until recently, common prac-

tice in such studies was to assume rational expectations implying that individuals’

beliefs are given as objective probability distributions. The use of objective distri-

butions is by now put into question by numerous researchers who suggest to directly

measure subjective expectations. Manski (2004) provides an overview on this lit-

erature and McFadden et al. (2005) discuss various survey design issues related to

questions about subjective expectations.

This paper focuses on the formation of subjective survival expectations. As point

of departure, we present stylized facts on a comparison between average subjective

survival expectations from the Health and Retirement Study (HRS) and their ob-

jective counterparts. These facts can be summarized as follows: First, on average,

individuals of relatively “young” age underestimate survival probabilities. Second,

this “pessimistic” bias monotonically decreases with age to zero for respondents of

about age 70. Third, “old” respondents overestimate their actual survival probability.
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Finally, this “optimistic” bias monotonically increases with age.1

We argue that these stylized facts are incompatible with the rational expectations

paradigm. Furthermore, the observed age-dependent biases in the data also suggest

a violation of the rational Bayesian learning paradigm. Models of subjective belief

formation based on rational Bayesian learning generate posterior beliefs that are closer

to the true, i.e., objective, distribution the more experienced the agent becomes.

Under our maintained assumption that an agent receives more survival-rates related

information by getting older, rational Bayesian learning requires the agent to learn

with increasing age the true probabilities, cf. Viscusi (1985, 1990, 1991). Under

the assumption of rational Bayesian learning any gap between subjective beliefs and

objective survival probabilities should therefore decrease in age. This contradicts the

data.

Our main contribution is the introduction of a closed-form model of Bayesian

learning of survival expectations which extends the standard model rational Bayesian

learning by psychological biases. This enables us to match the empirical facts. The

model is based on the framework of Choquet decision theory Schmeidler (1986, 1989)

and Gilboa (1987). While Choquet decision theory has been originally developed to

model ambiguity attitudes as expressed in Ellsberg paradoxes (Ellsberg 1961), our

approach demonstrates the usefulness of Choquet decision theory under the assump-

1Our findings confirm results documented in a vast literature on subjective survival probabilities,

see below.
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tion that a representative agent reports survival beliefs which are prone to likelihood

insensitivity. Wakker (2010) refers to likelihood insensitivity as a new psychological

concept which “reflects diminishing sensitivity for a scale bounded from two sides” (p.

227). According to this cognitive interpretation, agents do not sufficiently distinguish

between probabilities that lie between zero and one when they report their proba-

bilistic beliefs. Our approach is therefore in line with the psychological literature that

documents self-reported probabilities which can be described as non-additive prob-

ability measures (cf. Wu and Gonzalez (1996), Wakker (2004, 2010)). An extreme

expression of likelihood insensitivity are “fifty-fifty” probability judgements (Bruine

de Bruin, Fischhoff, and Halpern-Felsher, Bonnie Millstein 2000) which can be de-

scribed by the non-additive probability measure that assigns probability 0.5 to every

uncertain event.

More precisely, we formally describe self-reported survival beliefs as neo-additive

capacities in the sense of Chateauneuf, Eichberger, and Grant (2007). Neo-additive

capacities are non-additive probability measures that give rise to a linear transfor-

mation of (non-extreme) probabilities such that the probability weighting function

for probabilities between zero and one is flatter than the 45-degree line. As a con-

sequence, neo-additive capacities allow for a parsimonious formalization of concepts

such as likelihood insensitivity or ambiguity attitudes within Choquet decision theory.

We assume that these neo-additive beliefs are updated in accordance with the
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generalized Bayesian update rule (Eichberger, Grant, and Kelsey 2007). For the

representative agent of our model an initial bias between her subjective beliefs and

objective probabilities does thereby not necessarily vanish in the long run. Our

formal approach hence accommodates attitudes like “myside bias” or “irrational belief

persistence” as documented in the psychological literature (Baron 2008, Ch. 9).

Our theoretical framework provides a parsimonious specification of the represen-

tative agent’s age-belief pattern with three parameters, reflecting, first, an initial bias

in subjective survival probabilities, second, a measure for the agent’s likelihood in-

sensitivity with respect to her initial estimator of her subjective survival probability,

and, third, an optimism, resp. pessimism, parameter. We estimate these three pa-

rameters by pooling HRS data. Despite the low parametrization, our model results

in a decent fit to average data on subjective beliefs.

Our work contributes to a vast empirical literature on subjective survival probabil-

ities that was initiated by Hammermesh (1985). In two different data samples from

surveys, Hammermesh (1985) found that people do incorporate improvements of life-

expectancy into their beliefs about personal longevity and that subjective survival

curves are somewhat flatter than objective data. Similar differences between subjec-

tive beliefs and objective data have been reported for the HRS by Hurd and McGarry

(1995) and Gan, Hurd, and McFadden (2005) and others and, more recently, for the

Survey of Health, Ageing and Retirement in Europe (SHARE) data (Hurd, Rohwed-
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der, and Winter 2005) as well as, for direct questions on remaining life expectancy

rather than probabilities, for the German SAVE data (Steffen 2009).

How subjective survival expectations respond to new information—health shocks

and other candidate predictors of own mortality such as parental death—and whether

these expectations serve as predictors of actual mortality is analyzed in the empirical

work by, among others, Hurd, McFadden, and Merrill (2001), Hurd and McGarry

(2002), Smith, Taylor, and Sloan (2001) and—applying the framework of Viscusi

(1985)—Smith, Taylor, Sloan, Johnson, and Desvouges (2001). A general conclusion

from this literature is that subjective survival expectations have predictive power for

the respondent’s own demise and that they are consistently updated with new health

information.

However, as summarized by Smith, Taylor, and Sloan (2001), subjective survival

expectations “do not appear to reflect all of the information that respondents who

subsequently die know about their survival prospects”. This finding comes as no

surprise as we argue that (updating of) subjective beliefs cannot be fully explained

by use of objective data in situations where an individual’s learning process may be

prone to emotions such as hope or despair. This is particularly true when an indi-

vidual learns new information about her life expectancy thereby facing the prospect

of her own death. Along this line, Kastenbaum (2000) summarizes the insights of

psychological research on the reflection about personal death as follows: “There are
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divergent theories and somewhat discordant findings, but general agreement that

most of us prefer to minimize even our cognitive encounters with death.” This also

suggests that psychological biases in subjective survival expectations may vary with

age because cognitive encounters with death are stronger when the risk becomes more

relevant, just as in our model.

The remainder of our analysis is structured as follows. Section 2 documents styl-

ized facts in the HRS data. Section 3 develops our parsimonious model of subjective

life expectancy. We then present the main results of our empirical analysis in Sec-

tion 4. Finally, Section 5 concludes. A separate supplementary online appendix2

contains decision theoretic foundations of our model, provides a detailed description

of our data and reports additional results.

2 Stylized Facts

We compare subjective survival beliefs, based on data of the Health and Retirement

Study (HRS), with objective survival rates. The data contain information about in-

dividuals’ expectations to live from age at interview j up to some target age m. Age

at interview j and target age m are assigned according to the pattern in Table 1.

Objective survival rates are based on cohort life tables for the U.S. population. A de-

tailed description of our data sources and methods is provided in the online appendix.

2Available at www.wiso.uni-koeln.de/aspsamp/cmr/alexludwig/downloads/ParsiApp.pdf.
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The following section only provides a brief summary.

Table 1: Interview and Target Age

Age at Interview j Target Age m
≤69 80
70-74 85
75-79 90
80-84 95
85-89 100

Source: RAND HRS Data Documentation, Version F (October 2006).

2.1 HRS Data

In the HRS, respondents of waves 5 through 7 were asked in the respective interview

years 2000, 2002 and 2004 about their probability to live from interview age j until

a certain target age m, cf. Table 1. In our analysis, we pool the information in these

three waves. As we discuss in the online appendix, we do not consider households of

age 40− 49 and of age 90 and older. In addition we exclude some observations with

inconsistent answering patterns. This selection by age and consistency of answering

patterns leaves us with a total sample size of 44671 observations out of which 18341

are male and 26330 are female respondents. While most of our analysis focusses on

this “full sample”, we further investigate sensitivity of our results with respect to

focal point answers at subjective survival probabilities of 0, 50, and 100 percent in

Subsection 4.3.

We next construct objective survival rates. In correspondence with our represen-
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tative agent model that we develop in Section 3, we follow the literature initiated

by Hammermesh (1985) and use cohort life tables for the entire U.S. population as

objective data. To construct those we predict future survival rates in the population.

Estimates are based on data for age-specific survival rates for years 1900 to 2004

taken from the Human Mortality Database (2008) (HMD) and the Social Security

Administration (SSA). Since projections from official sources tend to underestimate

future increases in survival probabilities, we do not use SSA cohort life tables but

rather base the prediction of future survival rates on a Lee-Carter procedure (Lee

and Carter 1992). The idea of our approach is that agents in our model base their

predictions of their respective objective survival probabilities on past data but it is

unobserved to the econometrician which point estimates they use. For this reason

we account for uncertainty of objective data in the estimation of standard errors, cf.

Section 4. As an additional advantage, our procedure assigns objective information

on survival rates in correspondence with the HRS interview years.

2.2 Illustration

Figure 1 summarizes information in our data by displaying average subjective beliefs

on survival of HRS respondents against age at interview and the respective objective

data for men in panel (a) and women in panel (b). The different line segments are

due to changes in target ages, cf. Table 1. Two stylized facts emerge for either gender
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from the data. First, subjective beliefs on survival are downward biased at younger

ages. Second, subjective beliefs on survival are upward biased at older ages whereby

the upward bias increases with age. These stylized facts clearly indicate a systematic

violation of the rational expectations paradigm of economic theory by which there

should be no difference between subjective beliefs and objective survival rates.

Figure 1: Subjective and objective survival probabilities
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(b) Women
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Source: Own calculations based on HRS, HMD and SSA data.

For younger respondents (≤ 69) the data in Figure 1 is compatible with the conver-

gence behavior as predicted by rational Bayesian learning.3 However, upon inspection

of the age-belief pattern of elderly respondents of age 75 and older in Figure 1, the pic-

ture changes. In Figure 2 we zoom in from figure 1 average beliefs of male respondents

between interview ages 80 to 89 to survive until 95, respectively until 100, against

their objective counterparts in panel (a). To illustrate learning behavior in this age

3For women we do not observe such a clear convergent pattern even for this age group.
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group we estimated simple linear trends for both the subjective and the objective

data and display the differences in these trends in panel (b) of the same figure. These

graphs indicate divergence with increasing age. This divergent pattern is stronger

for the higher interview/target age group. Thus, contrary to the predictions of the

rational Bayesian learning model the average bias between subjective beliefs and ob-

jective probabilities increases rather than decreases with more experience whereby

this effect appears to be stronger for higher target ages.

The patterns shown in Figure 2 illustrate a violation of the rational Bayesian

learning paradigm within target age groups. Furthermore, in order to explain the

data across target age groups, the rational Bayesian learning hypothesis would require

highly implausible prior beliefs. For example, the overestimation of the subjective

belief of an 80 year old agent to live until 95 by 17.28 percentage points for men

(8.54 percentage points for women), cf. Figure 1, can only be explained with rational

Bayesian learning if the same agent expressed a prior belief with a much higher

degree of overestimation about her survival at age 50. However, at age 50, we actually

observe an average underestimation of the survival belief by −13.70 percentage points

for men (−15.07 percentage points for women). Although these are not the same

agents, such differences across cohorts appear implausible. We further document in

the online appendix that cohort effects are indeed not relevant.
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Figure 2: Survival probabilities at age 80 and older for men

(a) Men
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(b) Older Men
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Panel (b) displays the difference in these linear trends.

Source: Own calculations based on HRS, HMD and SSA data.

3 A Parsimonious Model of Subjective Life Ex-

pectancy

Our closed form model of Bayesian learning with psychological bias captures the styl-

ized facts of Figure 1 in a very parsimonious way. It also offers a plausible explanation

why young people are too pessimistic whereas elderly people are too optimistic about

their survival expectations. The formal approach shares similarities with Zimper and

Ludwig (2009) and Zimper (2009). In contrast to this earlier work, however, our the-

oretical model is tailored to the formation of subjective survival beliefs. The statistic

and decision theoretic foundations of our theory are provided in the online appendix.

The key building blocks are as follows: we merge a standard rational Bayesian
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updating model—described in Subsection 3.1—with a Choquet model of updating

non-additive beliefs—described in Subsection 3.2. A number of additional plausible

assumptions—laid out in Subsection 3.3—then lead to a parsimonious specification

of the representative agent’s age-belief pattern of survival beliefs with three param-

eters only. As we discuss in our psychological interpretation of our model—given

in Subsection 3.4—, these parameters reflect (i) an initial bias, ϕ, in the additive

estimator reflecting overestimation, i.e., ϕ > 1, or underestimation, i.e., ϕ < 1, (ii) a

measure for likelihood insensitivity, δ, and (iii) the degree of optimism, respectively

pessimism, by which the agent resolves her likelihood insensitivity, λ.

3.1 Rational Bayesian Learning

We describe a closed-form learning model with additive beliefs as introduced to the

economics literature by Viscusi and O’Connor (1984) and Viscusi (1985). A number

of formal definitions of the statistic environment of this model, in particular the

additive probability space (µ,Ω,F), as well as analytical derivations are given in the

online appendix.

Consider the situation of an agent who is uncertain about her likelihood to survive

until age m given that she has reached age j. Further, suppose that the agent

could observe for n individuals with i.i.d. survival probability whether any individual

survived from age j until m or not whereby we allow for the possibility that the
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sample size n may become arbitrarily large. We denote by Ikn the information of the

agent, i.e., the event that k out of n individuals have survived until age m. Define the

F -measurable random variable π̃j,m : Ω → [0, 1] such that π̃j,m (s, πj,m) = πj,m where

s denotes sample-information and πj,m ∈ [0, 1] denotes the true objective survival

probability.

For notational convenience, we now drop subscripts and, e.g., simply write π̃

instead of π̃j,m. Subscripts will be reintroduced below. The agent’s (subjective)

prior estimate of the true survival probability is then defined as the expected value

of π̃ with respect to a prior distribution µ, i.e., E [π̃, µ]. Accordingly, the agent’s

posterior estimate of π conditional on information Ikn is defined as the expected value

of π̃ with respect to the resulting posterior distribution, i.e., E
[
π̃, µ

(
· | Ikn

)]
. We

assume that the agent’s prior over π̃ is given as a Beta distribution with parameters

α, β > 0. We accordingly obtain as prior estimate the expected value of the Beta

distribution, implying E [π̃, µ] = α
α+β

. Furthermore, note that the agent’s posterior

µ
(
· | Ikn

)
is itself a Beta distribution with parameters α+ k, β+n− k.4 We therefore

have E
[
π̃, µ

(
· | Ikn

)]
= α+k

α+β+n
as the agent’s posterior estimate of π conditional on

information Ikn. Or, equivalently,

E
[
π̃, µ

(
· | Ikn

)]
=

(
α + β

α + β + n

)
E [π̃, µ] +

(
n

α + β + n

)
k

n
(1)

where k
n
is the sample mean. That is, the agent’s posterior estimate of the probability

4That is, the prior and the posterior are conjugate distributions because both belong to the Beta

distribution family.
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that an individual of age j survives until age m is a weighted average of her prior

estimate and the observed sample mean. The weight attached to the sample mean

increases in the sample size, also see below.5

As an additional object required below in Proposition 1 we have to specify the un-

conditional probability of receiving information Ikn. As shown in the online appendix

it is given by

µ
(
Ikn
)
=

(
n

k

)
(α + k − 1) · ... · α · (β + n− k − 1) · ... · β

(α + β + n− 1) · ... · (α + β)
. (2)

3.2 Bayesian Learning with Psychological Bias

We develop our concept of Bayesian learning with psychological biases as a gener-

alization of the rational learning model discussed above. We assume that reported

beliefs express likelihood insensitivity in the sense of Wakker (2010). Such individuals

can be described as Choquet decision makers so that the expectation of a random

variable with respect to a non-additive probability measure is given as its Choquet

expected value (Schmeidler 1986).6

5Tonks (1983) introduces a similar model of rational Bayesian learning in which the agent has a

normally distributed prior over the mean of a normal distribution and receives normally distributed

information.
6Besides the formal description of insensitivity to changes in likelihood (Wakker 2004), proper-

ties of non-additive beliefs are used in the literature for formal definitions of, e.g., ambiguity and

uncertainty attitudes (Schmeidler 1989; Epstein 1999; Ghirardato and Marinacci 2002), as well as

pessimism and optimism (Eichberger and Kelsey 1999; Wakker 2001; Chateauneuf, Eichberger, and

Grant 2007). See Wakker (2010) for a textbook treatment.
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3.2.1 Neo-additive Beliefs

Our approach focuses on non-additive probability measures that are defined as neo-

additive capacities in the sense of Chateauneuf, Eichberger, and Grant (2007). Ac-

cording to the standard—motivational—interpretation, neo-additive beliefs stand for

a deviation from additive beliefs such that a parameter δ measures the lack of confi-

dence the decision maker has in a subjective additive probability distribution µ. The

optimism parameter λ measures how much weight the decision maker puts on the

best possible outcome of an alternative. According to an alternative—the cognitive—

interpretation, δ is an index of likelihood insensitivity. Factor (2δλ+ (1− δ)) /2 is

referred to as index of elevation (cf. Equ 7.2.6 in Wakker 2010). In the remainder

of our analysis we simply refer to δ as index of likelihood insensitivity and to λ as

optimism parameter.

We consider the case of uncertain survival in which the agent is a Choquet decision

maker so that her prior survival belief about π is given by a neo-additive capacity ν

whose additive part is described by a Beta-distribution µ. Her (prior) estimator is

then the Choquet expected value of π̃, π̃ (Ω) ∈ [0, 1], with respect to the non-additive

prior ν:

E [π̃, ν] = δ · (λ ·max π̃ + (1− λ) ·min π̃) + (1− δ) · E [π̃, µ] .

As the best, respectively worst, possible outcome is survival, respectively death,
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we have that max π̃ = 1, respectively min π̃ = 0. Consequently, the above equation

simplifies to

E [π̃, ν] = δ · λ+ (1− δ) · E [π̃, µ] . (3)

3.2.2 Updating of Neo-additive Beliefs

Under the assumption that the agent updates (3) in light of new information Ikn, her

posterior belief is given by the conditional neo-additive probability measure ν
(
· | Ikn

)
so that the (posterior) estimate of π becomes E

[
π̃, ν

(
· | Ikn

)]
.

At this point we have to take a stand on how an agent updates her non-additive

beliefs. Several different Bayesian update rules are perceivable for the non-additive

beliefs of CEU decision-makers (Gilboa and Schmeidler 1993; Sarin and Wakker 1998;

Pires 2002; Eichberger, Grant, and Kelsey 2007; Siniscalchi 2006). In this paper we

consider the so-called Generalized Bayesian update rule which is formally defined in

the online appendix7.

Applied to survival beliefs we obtain the following neo-additive (posterior) esti-

mator that the agent of age j will be alive at age m given her information Ikn

E
[
π̃, ν

(
· | Ikn

)]
= δIkn · λ+

(
1− δIkn

)
· E

[
π̃, µ

(
· | Ikn

)]
(4)

7An axiomatic foundation under the assumption of CEU preferences is provided in Eichberger,

Grant, and Kelsey (2007, 2010)
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where

δIkn =
δ

δ + (1− δ) · µ (Ikn)
. (5)

Finally, we link information received by the agent to her age. We suppose that

an agent of age h receives information Ikn(h). This is equivalent to information gained

from a statistical experiment with n (h) trials whereby the experience function n (h)

satisfies n (0) = 0, n (h) < n (h+ 1) for all h and n (h) → ∞ if h → ∞. That is, our

approach associates a higher age with greater experience whereby we do not restrict

gaining of experience by any upper bound.8

3.3 A Parsimonious Model

Collecting equations (1)–(5), the following proposition summarizes the considerations

from above.

Proposition 1. Under the assumption of Bayesian learning with psychological bias,

the posterior belief of an agent of age h to survive from age j to age m conditional

on information Ikn(h) is given by

E
[
π̃, ν

(
· | Ikn(h)

)]
= δIk

n(h)
· λ+

(
1− δIk

n(h)

)
· E

[
π̃, µ

(
· | Ikn(h)

)]
,

whereby

δIk
n(h)

=
δ

δ + (1− δ) · µ
(
Ikn(h)

)
with

µ
(
Ikn(h)

)
=

(
n (h)

k

)
(α + k − 1) · ... · α · (β + n (h)− k − 1) · ... · β

(α + β + n (h)− 1) · ... · (α + β)

8Sensitivity analysis with respect to this assumption is presented in the online appendix.
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and

E
[
π̃, µ

(
· | Ikn(h)

)]
=

(
α + β

α + β + n (h)

)
E [π̃, µ] +

(
n (h)

α + β + n (h)

)
k

n (h)
,

where E [π̃, µ] is the agent’s prior additive estimate of the conditional survival prob-

ability. k
n(h)

stands for the observed sample mean of individuals who have survived

from age j to age m.

Finally, we develop a highly simplified version of our model of Bayesian learning

with psychological bias that we bring to the data on survival beliefs in Section 4. To

this end, we impose four technically convenient assumptions:

Assumption 1. The representative agent has a uniform prior distribution over the

parameter π. That is, α = β = 1, implying for (2)

µ
(
Ikn(h)

)
=

(
n (h)

k

)
k! (n (h)− k)!

(n (h) + 1) · n (h)!

=
1

1 + n (h)
.

Assumption 2. We suppose that the representative agent observes at every age sam-

ple means that actually coincide with objective survival rates. That is, for all h, k
n(h)

coincides with the true survival probability π∗
j,m to live from age j to m, whereby we

re-introduce the subscript notation that had been dropped in the previous two subsec-

tions.

Assumption 3. We restrict ourselves to an experience function n (h) = h whereby

we assume that agents start learning at the age of 20 which corresponds to h = 1 in

our model.

Assumption 4. We initialize E [π̃r,r+1, µ] for all ages r = j, . . . ,m− 1 as

E [π̃r,r+1, µ] = ϕπ∗
r,r+1.
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Using Assumptions 1 through 4 in Proposition 1 and setting bhj,m ≡ E [π̃j,m, ν (· | h)]

we can summarize our parameterized Choquet model of subjective life expectancy as

follows:

Proposition 2. Let h ≤ j < m and suppose that Assumptions 1-4 hold. Then the

posterior belief of an agent of age h to survive from age j to age m is

bhj,m = δh · λ+ (1− δh) · b̃hj,m, where b̃hj,m =

(
2ϕm−j + h

2 + h

)
π∗
j,m (6)

whereby

δh =
δ

δ + (1− δ) 1
1+h

(7)

and
m−1∏
r=j

ϕπ∗
r,r+1 = ϕm−jπ∗

j,m. (8)

In contrast to Proposition 1, which characterizes our concept of Bayesian learning

with respect to any possibly observable information Ikn(h), Proposition 2 presents a

model of Bayesian learning for a representative agent of age h that aggregates over all

possible observations Ikn(h), with k = 0, ..., n (h), to the effect that Bayesian learning

becomes now conditional on the agent’s age only. In moving from the information-

conditional learning model of Proposition 1 to the age-conditional learning model of

Proposition 2, we have clearly chosen technically convenient over realistic assump-

tions. Nevertheless, we are going to argue in this paper that the learning model of

Proposition 2 is—in spite of its limited realistic appeal—empirically superior com-

pared to the standard model of rational Bayesian learning. In the remainder of this

subsection we critically discuss Assumptions 1-4 in more detail.
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Under Assumption 1 the impact of received information is independent of the ob-

served k and depends only on the number of observations n (h). The assumption is

quite artificial. To see, however, that the uniform distribution assumption is techni-

cally very convenient, observe that it implies a constant value of the likelihood in-

sensitivity parameter δIk
n(h)

across all possible observations Ikn(h), with k = 0, ..., n (h).

Consequently, by Assumption 1 we trivially obtain for the “aggregated” likelihood

insensitivity parameter that

E
[
δIk

n(h)
, µ

(
Ikn(h)

)]
=

n(h)∑
k=0

δ

δ + (1− δ) · µ
(
Ikn(h)

) · µ
(
Ikn(h)

)
=

δ

δ + (1− δ) 1
1+h

≡ δh.

That is, Assumption 1 greatly simplifies the aggregation problem over different sur-

vival information that an agent of age h can possibly observe.

Assumption 2 is, by the law of large numbers, appealing for a large number of

observations. We regard it as innocuous. Notice that the assumption also implies

that k = π∗
j,mn(h).

Normalization of initial age in Assumption 3 corresponds with many life-cycle

models of consumption and savings where agents are assumed to become economi-

cally active at age 20. Our findings are robust with respect to this normalization.9

The structure of the experience function specified in Assumption 3, however, re-

quires more discussion. We stipulate that the amount of survival information strictly

9Results are available upon request.
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increases in an individual’s age. Our first argument in favor of Assumption 3 is

pragmatic: To model an information flow in terms of a filtration process, i.e., no

memory losses, is standard in the literature. Second, our assumption captures the

notion that older individuals have more information about their own demise because

they observe peer groups dying as well as have experienced own health histories.

However, our assumption does not account for the empirical fact that memory-losses

become increasingly common for older age-groups. To accommodate this, we investi-

gate sensitivity of our estimation results with respect to the experience function, see

our online appendix. There we consider faster accumulation of experience in a linear

way, a square-root experience function (capturing decreasing marginal experience),

and an inverse u-shaped experience function with a peak at real-life age 65 (which

represents a reduced form model of decreasing marginal experience combined with

an eventually dominating depreciation of memory). Broadly speaking, our findings

are robust to these alternative choices.10

Assumption 4 implies that belief E [π̃j,m, µ] for all pairs (j,m) is given byE [π̃j,m, µ] =∏m−1
r=j ϕπ∗

r,r+1 = ϕm−jπ∗
j,m. The assumed age-independent difference between the (ad-

ditive) subjective expectation of the representative agent’s survival probability and

the true average survival probability keeps the model as mathematically simple as

possible.

10A qualitative difference is that inverse u-shaped experience translates into inverse u-shaped

likelihood sensitivity.
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3.4 Psychological Interpretation

If there is no likelihood insensitivity in the agent’s beliefs, i.e., δ = 0, our model

reduces to a version of rational Bayesian learning such that

bhj,m =

(
2ϕm−j + h

2 + h

)
π∗
j,m.

We occasionally refer to term 2ϕm−j+h
2+h

as a bias factor. In line with standard results

on consistency of additive Bayesian estimators, in particular Doob’s consistency the-

orem (Doob (1949), Breiman, LeCam, and Schwartz (1964), Lijoi, Pruenster, and

Walker (2004)), the subjective belief of a rational agent therefore converges to the

objective probability π∗
j,m when her actual age h—and thereby the amount of gath-

ered information—increases. Depending on an initial overestimation (ϕ > 1), resp.

underestimation (ϕ < 1), subjective beliefs monotonically converge from “above”, re-

spectively “below”. This convergence behavior is the same for all target ages. Such a

model of rational Bayesian learning can obviously not accommodate the stylized facts

of Figure 1, showing strong underestimation for a lower target age, e.g., m = 80, and

strong overestimation for a higher target age, e.g., m = 95. In order to accommodate

these stylized facts by rational Bayesian learning alone, an adequate model would

require target-age specific parameters ϕm such that, e.g., ϕ85 < 1 and ϕ95 > 1. Such

an extension would come at the cost of losing parsimony without offering a straight-

forward interpretation of the additional parameters. In our opinion, it is therefore

highly implausible that the HRS data may reflect rational Bayesian learning alone.
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If, in contrast, there is some likelihood insensitivity involved, i.e., δ > 0, the

resulting non-additive Bayesian estimator is no longer consistent but rather biased.

Now there exist two different long-run effects in our model of Bayesian learning.

On the one hand, the additive part of the agent’s belief, i.e.,
(

2ϕm−j+h
2+h

)
π∗
j,m, still

converges with increasing age h towards the objective probability π∗
j,m. On the other

hand, however, the impact of this additive part on the overall belief will decrease

with increasing age since, for a given 0 < δ < 1, δh is strictly increasing in h.

That is, the older the agent gets, i.e., the more information she receives, the more

is her survival belief determined by the value of the optimism parameter λ. As

a consequence, comparatively small objective survival probabilities, i.e., π∗
j,m < λ,

tend to be overestimated with increasing age h, whereas large objective survival

probabilities, i.e., π∗
j,m > λ, tend to be underestimated. Since the objective survival

probabilities are decreasing with higher age, our formal model is able to capture

the stylized facts presented in Section 2 that (i) elderly people appear to be overly

optimistic whereas (ii) young people are apparently overly pessimistic with respect

to their survival probabilities.

If there is some likelihood insensitivity involved, the agents of our model tend

to “flatten out” probabilities with increasing age. We can thus offer the following

behavioral interpretation of our formal learning model:

1. With increasing age the agent loses her probabilistic sophistication because any
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probabilistic differences become—in her perception—increasingly dominated by

her attitudes towards likelihood insensitivity.

2. Nevertheless, the agent also keeps on learning from the data in a rational sense

by updating the additive part of her subjective belief in accordance with the

standard Bayesian approach.

Alternatively, one could argue that people want to minimize their “cognitive en-

counters with death” (Kastenbaum 2000) and suppress the notion of death the more,

the more relevant the risk of dying becomes, i.e., the older they are. Interpreting

such age-increasing minimization of cognitive encounters with death as an increas-

ing deviation from a rational assessment, the increasing optimistic bias of our model

might be (heuristically) interpreted as a measure for people’s avoidance of “a realistic

assessment of their encounter with death”.11

Regardless of any specific behavioral—either heuristic or decision theoretic—interpretation

we may want to attach to our Choquet decision-theoretic model of biased Bayesian

learning, we demonstrate in the remainder of this paper that our parsimonious model

captures the stylized facts of the HRS data surprisingly well.

11We owe this interpretation to an anonymous referee.
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4 Empirical Analysis

4.1 Estimation Strategy

According to equations (6) and (7), we have to estimate three parameters, Ψ =

[ϕ, δ, λ]. To estimate these parameters we pool a sample of HRS data of waves

{2000, 2002, 2004}. Except for heterogeneity in sex and age, we ignore all other

heterogeneity across individuals. We deliberately choose this strategy in order to

focus the analysis on the main message of this paper: Choquet Bayesian learning

is a more appropriate model for survival belief formation than rational Bayesian

learning.12 For notational convenience, we again do not display an index for sex.

In each interview age group j we have Nj observations denoted as i ∈ {1, . . . , Nj}

where Nj differs across groups. In our estimation we weigh observations by the inverse

of the group sizes, 1
Nj
, so that we down-weigh age groups with many observations

relative to age groups with few observations and vice versa.13 We assume a linearly

additive error term and determine parameter values by solving the following non-

linear minimization problem

min
Ψ

1

2

J∑
j=1

1

Nj

Nj∑
i=1

(
ib

j
j,m − bjj,m

)2
.

12In particular, it is not the purpose of this paper to analyze how updating of beliefs differs across

particular idiosyncratic health shocks or other events that are regarded as relevant for survival belief

formation in the literature, such as parental death. As we further discuss in our concluding remarks

in Section 5, a more in depth analysis of survival belief formation based on idiosyncratic events

using our framework is left for future research.
13Observe that this weighting scheme implies that our point estimates are identical to a regression

based on average survival rates of each group. Parameter estimates from an un-weighted regression

are similar and are available upon request.
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Here, ib
j
j,m = E [π̃j,m, νi (· | j)] denotes individual i’s conditional subjective belief to

survive from interview age j to target age m as reported in the HRS data. bjj,m =

E [π̃j,m, ν (· | j)] is the predicted subjective belief according to our model as defined in

the previous section. Recall that target ages are assigned to interview ages according

to the pattern in Table 1.

We solve the above non-linear programming problem using a non-linear optimizer.

As unique convergence is not guaranteed for such problems, we tried various com-

binations of starting values, Ψ0, and alternative optimization routines for all of our

scenarios that follow. For all these combinations the numerical routines returned the

same solution vector Ψ̂. We are therefore confident that the solvers converge to the

unique global minimum. We bootstrap standard errors by drawing with replacement

from our data on subjective beliefs and from our predicted data on objective survival

probabilities in 500 bootstrap iterations.

4.2 Main Results

Our main estimation results are summarized in Table 2. For each estimated pa-

rameter, the table contains sex specific information on the point estimates, Ψ̂, the

respective standard errors, σ̂(Ψ), and the 95% confidence intervals of the coefficient

estimates, ĈI(Ψ). We also report the R2 of the regressions as well as an “average

R2”, denoted as R̄2, as a measure of the fraction of the variation in average survival
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probabilities explained by our model.

Table 2: Parameter estimates

Men Women

Ψ̂ σ̂(Ψ) ĈI(Ψ) Ψ̂ σ̂(Ψ) ĈI(Ψ)
Initial bias: ϕ 0.891 0.002 [ 0.887 0.895 ] 0.900 0.002 [ 0.896 0.905 ]
Likelihood Insens.: δ 0.020 0.002 [ 0.017 0.024 ] 0.021 0.001 [ 0.019 0.023 ]
Degree of optimism: λ 0.454 0.012 [ 0.431 0.476 ] 0.394 0.012 [ 0.371 0.419 ]
R2 0.041 0.003 [ 0.034 0.048 ] 0.063 0.003 [ 0.057 0.069 ]
R̄2 0.803 0.035 [ 0.691 0.834 ] 0.943 0.010 [ 0.905 0.944 ]

Notes: Ψ̂ are point estimates of model parameters, σ̂(Ψ) is the respective standard deviation and

ĈI(Ψ) is the respective 95% confidence interval. Standard errors are calculated by bootstrapping

the subjective and objective survival probabilities by drawing with replacement in 500 bootstrap

iterations.

Source: Own calculations based on HRS, SSA and HMD data.

We have already argued that a model of rational Bayesian learning alone cannot

explain the observed patterns in the data because predicted subjective survival rates

from such a model would converge to objective data. Quite in contrast, our model of

psychologically biased Bayesian learning which considers non-additive beliefs results

in a decent fit to average subjective survival expectations, also see Figure 3. For both

men and women, predicted subjective beliefs track the average subjective beliefs from

the data nicely. The average R2 is between 0.8 and 0.9 whereby the fit is significantly

higher in case of women.14 Unsurprisingly, our parsimonious specification of average

14The value of the two-sided t-test on the difference between the R2s for men and women is 108.96

with a p-value of 0.0. The values of Jarque-Bera test statistics for normality of the distribution of

the bootstrapped R2s (and their p-values) are at 0.02 (0.99) for men and at 4.49 (0.10) for women

so that a standard t-test is applicable.
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Figure 3: Actual and predicted survival probabilities for psychologically biased
Bayesian learning

(a) Men
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(b) Women
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Notes: Thin dashed lines are 95% confidence intervals obtained from 500 bootstrap iterations.

Source: Own calculations based on HRS, HMD and SSA data.

beliefs results in low R2s of the regressions—0.041 for men and 0.063 for women—

because our representative agent model can only capture some of the variation in

answering patterns across individuals.

All parameters are estimated with high precision. Accordingly, parameters δ and λ,

which reflect the psychological biases in our model, are key for generating our results

and we thereby formally reject the hypothesis of pure rational Bayesian learning. The

point estimate of the initial bias, ϕ, is below one and captures the initial pessimism

expressed in subjective beliefs documented in Figure 1. Interpretation of the point

estimate of ϕ = 0.89 for men (ϕ = 0.9 for women) is that a person with one year

of experience at age 20 estimates the additive probability to survive from age 50
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to age 80 (for which m − j = 30) to be 2ϕm−j+h
2+h

· 100% = 2ϕ30+1
3

· 100% = 35.4%

(36.2%) of the objective data. Finally, a person at the age of 50 who has already

gathered 31 years of experience (h = 31), underestimates the additive probability by

factor 2ϕm−j+h
2+h

· 100% = 2ϕ30+31
33

· 100% = 94.1% (94.2%) only. As we show in the

online appendix, however, these biases should not be interpreted too literally because

they crucially depend on the speed at which experience is accumulated.

Recall from equation (6) that biases in beliefs are not only governed by the additive

model. We find that the measure of optimism under likelihood insensitivity is signifi-

cantly higher for men, i.e., λ = 0.454 with a 95% confidence interval of [0.431, 0.476],

than for women, i.e., λ = 0.394 with a 95% confidence interval of [0.371, 0.419].15 At

the same time, the initial degree of likelihood insensitivity is almost identical for both

sexes. According to our interpretation of non-additive beliefs, the weight (1− δh)

measures how much evidence gained from rational Bayesian learning is taken into

account. Conversely, δh corresponds to the weight by which beliefs are affected by

some “myside bias,” in our model formalized as personal attitudes towards optimism,

respectively pessimism, as measured by λ. A literal interpretation of our estimation

results therefore suggests that respondents of both sexes are roughly affected by the

same degree of likelihood insensitivity, but men resolve their likelihood insensitiv-

ity in a more optimistic manner than women. Furthermore, our results indicate

that the initial likelihood insensitivity at the age of 19, cf. Assumption 3, is rather

15The t-statistic of the two-sided t-test for equality of the point estimates is 3.53.
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low; the point estimates are about 0.02. At age 20, with one year of experience, it

is 0.02
0.02+(1−0.02) 1

2

= 0.039 and at age 50 (h = 30) it is δ30 = 0.02
0.02+(1−0.02) 1

31

= 0.39,

roughly ten times as large. Panel (a) in Figure 4 displays the degree of likelihood

insensitivity δh for all ages 50 − 89. Hence, although initial likelihood insensitivity

at age 19 is relatively low, it has a strong impact on survival belief formation as

individuals get older.

To interpret parameter estimates further, notice that our model represents two

maps. The first map is from the objective data π⋆
j,m to a subjective additive measure

via bias factor 2ϕm−j+h
2+h

, hence b̃hj,m =
(

2ϕm−j+h
2+h

)
π∗
j,m. The second transformation

maps the resulting object into a subjective non-additive probability measure bj,m

with parameters δ, λ, cf. equation (6). As emphasized by Wakker (2010), this second

map is a linear approximation to the following inverse S-shaped probability weighting

function (cf. Tversky and Kahneman (1992), Wu and Gonzalez (1996))

ω(ξh, b̃
h
j,m) =

(b̃hj,m)
ξh(

(b̃hj,m)
ξh + (1− b̃hj,m)

ξh

) 1
ξh

(9)

for age-specific parameters ξh.

To illustrate this analogy, we back out age-specific parameters ξh from our esti-

mates of δh and λ by minimizing the Euclidean squared distance between (6) and (9)

for h = 31, . . . , 71 (biological ages 50 to 90). Results of the age-specific probabil-

ity weighting factors ξh are shown in Panel (b) of Figure 4. As ambiguity increases

(Panel (a)), the linear probability transformation of equation (6) becomes less steep

and curvature of the probability weighting function (9) increases, i.e., ξh decreases

(Panel (b)). Implied values of ξh are well within the range of standard estimates as
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reported by Wu and Gonzalez (1996) which is [0.5, 0.9].

Figure 4: Likelihood insensitivity and implied probability weighting factor

(a) Likelihood insensitivity (δh)
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(b) Implied probability weighting factor (ξh)
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Notes: Thin dashed lines are 95% confidence intervals obtained from 500 bootstrap iterations.

Source: Own calculations based on HRS, HMD and SSA data.

Figure 5 clarifies this analogy further. Here we plot for biological ages 50 and 80

the probability weighting function (dashed line, equation (9)), and its linear approx-

imation (dashed-dotted line, equation (6)), for our point estimates of δ, λ and the

implied values of δ31, ξ31, respectively δ61, ξ61, each for averages over sexes. The graph

illustrates how likelihood insensitivity of older households increases in our model, i.e,

the linear approximation to the probability weighting function (dashed dotted line)

moves closer to a horizontal line where b̃hj,m = 0.5, a fifty-fifty probability judgement.

Intersection of the linear dashed-dotted line representing equation (6) with the 45-

degree line (along which bhj,m = b̃hj,m) is at b̃hj,m = λ. Hence, b̃hj,m = λ represents the
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Figure 5: Probability weighting functions

(a) Age 50

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
probability weighting functions for age 50

subjective additive probability

su
bj

ec
tiv

e 
no

n−
ad

di
tiv

e 
pr

ob
ab

ili
ty

 

 

probability weighting function
linear approximation

(b) Age 80
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Notes: Implied probability weighting functions are computed for the respective point estimates

averaged over sexes.

Source: Own calculations based on HRS, HMD and SSA data.
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knife-edge case between an optimistic relative to a pessimistic bias with respect to

a subjective additive probability measure. That age 50 (80) households exhibit a

pessimistic (optimistic) bias is due to the fact that respective objective probabilities

to survive to some target age are more (less) than λ, cf. Figure 3.16

4.3 Focal Point Answers

An apparently serious problem in data on subjective survival probabilities is the

existence of “focal point answers” at self-reported survival probabilities of 0, 50,

and 100 percent (Hurd and McGarry 1995; Gan, Hurd, and McFadden 2005). One

interpretation for individuals indicating probabilities of 0 or 100 percent is that they

have not fully understood the question.17 Thus, focal point answers could be regarded

as implausible estimates of subjective probabilities. However, as discussed by Smith,

Taylor, Sloan, Johnson, and Desvouges (2001) and Khwaja, Sloan, and Chung (2007),

these focal point answers at 0% and 100% still have information content regarding the

correct subjective belief because smokers provide the answer 0% more frequently than

non-smokers. The target age-group specific answer pattern in our data, shown in our

online appendix, also illustrates that focal point answers have information content for

the true subjective belief because the frequency of focal point answers at 0% increases

with target age whereas the frequency of focal point answers at 100% decreases with

target age. The overall pattern is the same for male and female respondents.

We investigate sensitivity of our results with respect to focal point answers by

16In this argument, we can ignore for age 80 households the difference between the additive

objective measure π and the additive subjective measure b̃ because the bias factor 2ϕm−j+h
2+h is close

to one for that amount of experience.
17An alternative interpretation is that focal point answers reflect ambiguity, cf. Hill, Perry, and

Willis (2006).
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deleting in our sample all observations with focal point answers. This correction

leaves us with a sample size of 24225 observations (10188 male and 14037 female

respondents). Hence, roughly 46% of interviewees in our full sample have given focal

point answers at either 0%, 50% or 100%, respectively. Estimation results for this

alternative data set are summarized in Table 3. A comparison with our benchmark

results in Table 2 shows that the broad pattern of estimated parameter values does

not change. The only discernible difference to our benchmark results is that the

estimates of the degree of optimism, λ, do not differ much across sexes. Therefore,

our earlier interpretation that men seem to resolve their likelihood insensitivity in a

more optimistic manner than women, is not robust with respect to the exclusion of

focal point answers.

Table 3: Parameter estimates: Excluding focal point answers

Men Women

Ψ̂ σ̂(Ψ) ĈI(Ψ) Ψ̂ σ̂(Ψ) ĈI(Ψ)
Initial bias: ϕ 0.894 0.004 [ 0.886 0.900 ] 0.909 0.009 [ 0.901 0.934 ]
Likelihood insens.: δ 0.023 0.003 [ 0.019 0.029 ] 0.028 0.002 [ 0.025 0.033 ]
Degree of optimism: λ 0.441 0.012 [ 0.417 0.467 ] 0.436 0.011 [ 0.415 0.455 ]
R2 0.043 0.004 [ 0.035 0.051 ] 0.051 0.004 [ 0.043 0.058 ]
R̄2 0.826 0.055 [ 0.615 0.833 ] 0.879 0.033 [ 0.774 0.901 ]

Notes: These results are based on a sample which excludes focal point answers at 0%, 50% and

100%, respectively. Ψ̂ are point estimates of model parameters, σ̂(Ψ) is the respective standard

deviation and ĈI(Ψ) is the respective 95% confidence interval. Standard errors are calculated by

bootstrapping the subjective and objective survival probabilities by drawing with replacement in

500 bootstrap iterations.

Source: Own calculations based on HRS, SSA and HMD data.

Furthermore, our findings are robust to the structure of the experience function,

cf. Assumption 3, and our choice of initial age. Results on such sensitivity analyses

are available upon request.
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4.4 Selectivity

One criticism raised against using population averages as the relevant objective data

is that our HRS sample may be prone to selectivity. Reasons for such selection biases

are either that households have moved to nursing homes and are not followed by

HRS interviewers or that sick people are reachable but may not be able to answer

the questionnaire.18 Such selection effects may explain (some of) the optimism we

observe at higher ages in Figure 1.

To address these concerns, we compute the HRS hazard rates between waves 2000

and 2002 and between waves 2002 and 2004, respectively, and compare them to the

biannual mortality rates in the population for the respective years. In our online

appendix, we present resulting hazard rates for men and women. This shows that

HRS hazard rates correspond with the mortality rates in the population.

4.5 Cohort effects

An alternative view at the data might be that answering patterns depicted in Figure 1

reflect cohort rather than age effects. E.g., older households may have been more

optimistic when they were young. To accommodate this aspect we plot in the online

appendix subjective data for various birth cohorts. There is no apparent indication

of relevant cohort effects.

18As Mike Hurd pointed out to us, the first selection effect was particularly severe for the early

waves of the HRS because people were not followed into nursing homes in the past. Since we use

the more recent waves of the HRS where people are in fact followed into nursing homes, selection

effects may only play a role for the very old respondents in our sample, if at all.
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5 Conclusion

The HRS data on subjective survival beliefs suggest a violation of the rational expec-

tations paradigm as well as of the rational Bayesian learning hypothesis. In a first

step we therefore propose a new model of Bayesian learning that encompasses rational

Bayesian learning while it additionally allows for the existence of a psychological bias

in the interpretation of new information. For this purpose our formal approach com-

bines concepts, such as non-additive beliefs and generalized Bayesian updating, from

Choquet decision theory with the standard approach of rational Bayesian learning.

The resulting model of psychologically biased belief formation is very parsimonious in

that it requires a low parametrization reflecting, first, an initially biased additive esti-

mator of subjective survival probabilities, second, a measure for the agent’s likelihood

insensitivity with respect to her initial estimator of her subjective survival probabil-

ity, and, third, a measure for the agent’s optimistic versus pessimistic attitudes with

respect to this likelihood insensitivity. Besides this parsimonious specification of the

formation of subjective survival beliefs, our learning model has the additional ad-

vantages that, first, it is axiomatically founded within Choquet decision theory and,

second, it is well supported by psychological evidence on diverging learning behavior.

In a second step we estimate parameters of our model by pooling HRS data.

Despite the parsimonious parametrization we find that our model explains 80− 94%

of the variation of average subjective survival probabilities in the data. The model’s

performance is statistically better for women than for men. For both genders we

can clearly reject the hypothesis that HRS data on subjective survival probabilities

may be explained by rational Bayesian learning. The reason is that the rational

Bayesian learning hypothesis implies convergence of the subjective probabilities to

the respective objective data at higher ages but we instead observe an increasing

degree of optimism in the data. On the contrary, our more sophisticated model of
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psychologically biased Bayesian learning can match these patterns.

In our theoretical model we condition updating of subjective beliefs on sex and

age of individuals only by which we obtain a representative agent interpretation. We

deliberately choose this strategy in order to focus the analysis on the main messages

of this paper, namely that Choquet Bayesian learning is a more appropriate model

for survival belief formation than rational Bayesian learning. The strength of our

parsimonious approach is certainly that we can directly map our model into life-cycle

models of consumption and savings. Along this line, our current research evaluates

the implications of our model for life-cycle models of consumption and savings. We

thereby extend the work by, e.g., Bleichrodt and Eeckhoudt (2006) to a multi-period

setup.

However, our simple empirical strategy does not allow us to analyze how updating

of beliefs differs across a variety of observed idiosyncratic health shocks or other events

that are regarded as relevant for survival belief formation in the literature, such as

parental death. In our future research, we plan to modify our empirical model in such

a way that the objective information is not based on average survival rates in the

population but rather on objective information at the individual level. This would

enable us to condition updating of beliefs on observed idiosyncratic shocks in between

waves of the HRS, similar to Smith, Taylor, Sloan, Johnson, and Desvouges (2001).
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